AD-A02 493 PRC DATA SERVICES CO RESTON VA F/6 9/2
CALCOMP PREVIEW svsrsu. PROGRAM MAINTENANCE MANUAL. (U)

APR 81 DCAL00=77: 0037
UNCLASSIFIED NCA/NF=A1/AN2A i

‘ m

30272-101

/77’ ' y
()~ M

RcPORT DOCUMENTATION -

Z\PAGE

RSP R 2 3. Reciplent’s Accession No.
DCA/DE'-Bl/OQZa AD* | Qé{;/%/ '

. C“@F‘w"' N—i

| CALCOMP PREVIEM SYSTEM,

/" 6 Repert Omte

{]- Apri%=®881 (date of issu

I
Program Maintenance Manual \‘——4-.

Reston, VA 22090

Planning Research Corporation
Data Services Comnany
11391 Sunset Hills Drive

7. Author(s) 8. Performing Orgenization Rept. No.
L_Planning Ree > b Covers 29n (PRC) 0 wtractor
9. Pactorming Orumnz © lame anc 5t ess 10. Project/Tesk/Work Unit No.

Subtask 8p-3.1

3., Contract(C)

or Grant(G) .Neo.

Q.; ©) DCA "16p-77-C-9p37 .
/V’“) '

Defense Communications
186G Wiehle Avenue
Reston, VA 22090

12. S ing Organi Name and Address

-

13. Type of Report & Period Covered

14.

1_1 il ‘1

g1neer -

1 S

(;fz_ jp;;nal rféfl{eA l

13. Suppiementary Notes

\ AN} -

—

ABAT Y A S

,(/1.,.&;1_7, e - FD-HA)oAa Y Tax

16 Abstract (Limit: 20C words)

ADA102493

The CALCOMP Preview System enables a user to evaluate the contents of a CALCOMP generated
plot file by displaying a similar image on the Tektronix 4014 graphic display terminal.

ls Documant Analysis ». Descriptors

Q.

-
()

g Identifiers/Open-Ended Terms

L.

- COSATI Field/Group

R

ll. Avnulbmty Smomn

Release Unlimited

18. Security Cless (This Report)
Unclassified

21. No. of ann

20. Security Class (This Page)
Unclassifioed

22. Price A

See ANSI-239.18)

See Instructions on Reverse

OPTIONAL FORM 272 (4.2 1)
(Formerly NYI&-)Q) X

3
ot
o

A or - WP o . PR - W

Control No. 80-3.1-2¢

LA

-~
-y
LN

AV

PROGRAM MAINTENANCE MANUAL
for the
CALCOMP PREVIEW SYSTEM
Prepared for the
DEFENSE COMMUNICATIONS ENGINEERING CENTER
Contract Yo. DCA 100-77-C-0037
Subtask 30-3.1
April 1981

TR i
I .

> .

PROGRAM MAINTENANCE MANUAL
for the
CALCOMP PREVIEW SYSTEM
Prepared for the
DEFENSE COMMUNICATIONS ENGINEERING CENTER
Contract Yo. DCA 100-77-C-0037

Subtask 30-3.1

April 1981

PRC (DCEC)
Control Ne. 80-3.1-2

SECTION

SECTION

1.
1.1

1.2

2.4.2

2.4.2a
2.4.2b
2.4.2¢
2.4.24
2.4.2e
2.4.2F
2.4.2g
2.4.2h
2.4.24
2.4.23
2.4.2k
2.4.21
2.4.2m
2.4.2n
2.4.20
2.4.2p

TABLE OF CONTENTS

GENERAL
Purpose of the Program Maintenance

Manual

Project References

SYSTEM DESCRIPTION

System Application
Security and Privacy
General Description
Program Description
Program MAIN
Specialized Subroutines

ASK

BLANKR

BOX

CALTEK

CIRCLE

DECODE

DEFALT

DRAW

FEICH

HELP

OPMSG

SPECL

SPLINE

STNDRD

WINDOW

GETFIL

£
~ O

~3

3

r—

SECTION

SECTION

2.4.3
2.4.3a
.4.3b
.4.3¢
A
2.4.5
2.5

(48]

[g¥]

[g¥]

3.1

TABLE QF CONTENTS

Service Subroutines

LLSQ

SYMHGT

TRANS
String Handling Routines
Graphic Subroutines

Program Logic Descriptions

ENVIRONMENT
Equipment Environment

Support Software

PROGRAM MAINTENANCE PROCEDURES

Retrieval Procedures

Extensions to a Different Machine

Additional Commands

91
91
91

e p——
. -

’y

FIGURE 2-01
FIGURE 2-02
FIGURE 2-03
FIGURE 4-Q1

FIGURE 4-02

FIGURE 4-03

FIGURE D-01

LIST OF FIGURES

System Flowchart (NASC AS/5-3
System Flowchart (PDP-11/70)
Drawing the Letter ‘A’

Sample JCL for Assembling String Handling
Routine

Sample JCL to Compile and Link Edit
a Module of the CALCOMP Preview Program

Listing of Overlay Structure on PDP-11/70
([60, 20} CLTOTK.ODL)

Sample CALCOMP Plot File

iv

38
93

94

98

D~04

A R = eV, TR TR TR <\t =

ey

L e AN B RNV A0

S e

SECTION 1. GENERAL v//

1.1 Purpose of the Program Maintenance Manual. The objective of the Program

Maintenance Manual for the CALCOMP Preview System (CPS) is to provide
the maintenance programmer personnel with the information necessary

to maintain the system.

1.2 Project References. The uevelopment of the CALGCOMP Preview System

was authorized under Subtask 80-3.1, CALCOMP to Tektromix Conversion,
under contract DCA 100-77-C-0037. The following documentation provides

information useful in understanding the system:

a. CALCOMP Model 7000 PLOTTING SYSTEM User’s Manual, DCEC (R830),
1 Oct 76.

b. CALCOMP Basic Software, CAL EDIT User's guide, California
Computer Products, Inc. May 1975.

c. TEKIRONIX PLOT 10 Terminal Control System User's Manual.

d. System/360 Scientific Subroutine Package (3604-CM-03X)

Version II Application Description, 1967.

e. Users Manual for the CALCOMP Preview System, March 1981.

SECTION 2. SYSTEM DESCRIPTION

2.1 Svstem Application. The CPS enables a user to evaluate the contents

of a data tape prepared for the CALCOMP flatbed plotter by displaying a
similar image on the Tektronix graphic display terminal. Representative
uses include:

Evaluating a plot file before plotting it on the CALCOMP plotter.

Determining an appropriate scaling factor and offset before

submitting the plot file to the CALCOMP plotter.

Obtaining plot images when the CALCOMP plotter is inoperative
or heavily used.

CPS provides a set of commands to control scaling, rotation, and positioning
of the display on the terminal screen. At any time, the user may make

a copy of the image using the hard copy attachment to the display terminal.
This capability allows the user to access the data on a CALCOMP plot

tape at will, without requiring the support of a plotter operator.

This preliminary review feature enables the user to confirm that the

data 1s ready for plotting, and thus provides a significant saving

in time and costs.

2.2 Securitv and Privacy. The CPS is unclassified, and is subject

to no privacy restrictions. Each user is responsible for observing
security or privacy restrictions applicable to any files plotted

through the system.

2.3 General Description. The system consists of one program, which

is run as a stand alone job when required. It is available for the
HYSF NASC AS/5-3 and on the MIGS PDP-11/70 system. Under the NASC svstem,
a CALCOMP plot file must be placed on disk to be accessed under TSO.

Under the PDP-11/70, the plot file mav be either om Jdisk or on a magnetic

tape file. See Figures 2-01 and 2-02 for system flowcharts.

e I

-~

[

(£~G/SY OSYN) 1aeyomoly wRisfg

we1foag
Jaoday JuT1g
dung £3117I0

10048014

uexRoaxg

10040L. L4

10046084

$dD >

10049013

CAR X , {o91p o A11) INd 03

1014
dHOIVD

CINSAS

paaynhax 31 Atup)

T10-7 dNONIA

(1-710%)
1euUImMIN],
srqdean
NINOUINAY

wradoag
HANAODGAT

1o am

n” 0050 2 MG i i ~ . = S

ke [DEUURIPR

(0£/11-4ad) 311eyomoty waisds :70-7 AUNDJA

¢ ITUun
< —
g Irtun

T (1-v10%)

jxoday weafoag ~M”mﬁww%
! : 22T .

dung ﬁl Sd0 919 21Un XINOWLIAL

-t

O O

-feupmial Ay woly
parrddns 3asn s NN 219YAR VaTuugTIg Aweuairyg

182114 1014 dRODTVD

[T

e P 1 oy S A AR R A

2.4 Program Jescription. The CPS includes one main program and 26

subroutines on the NASC AS/S5. On the PDP-11/70, the CPS includes one

additcional subroutine (37 total).

2.4.1 Program MAIN.
a. Identification: MAIN.

b. Functions: MAIN performs major functioms:
Initialization.
Accepting and interpreting user commands. .
Setting global variables to execute user commands.
Plotting an input CALCOMP file, when commanded.
Dumping an input CALCOMP file when commanded.

Termination.

The program is writtem in FORTRAN IV, in a top-down fashion, so that most 1
of the general and detailed funcrions are performed by subroutines, which

may be grouped into four classes:

. Specialized subroutines written to support this proiject. These !
are, in effect, an extension of MAIN, and have been separated |

for ease of maintenance and understanding. See para 2.4%.2.

. Service subroutines for mathematical computation. Most of
these have been written to support MAIN and its specialized
subroutines, but are called from variocus places in the program

when needed. See para 2.4.3.

. String handling routines for character manipulation.

See para 2.4.4.

. Graphics subroutines provided by the Tektronix Corporation

to establish an interface between application programs anc the

Tektronix zraphic display terminal. See para 2.s.3.]

[RRPUN

Virtually all of the communication among the specialized subroutines is

done through one labeled COMMON block (COMBLK), which contains the zlcbal

variables of the program. (See para 2.4.le for a description of the
labeled COMMON block and the global variables.)

¢. Input.

(1

(3

User commands are entered through logical unit 5 (usually
ailocated to the terminal). They are frze form, and consist
of lines of 60 bytes or less. See the user's manual

(ref. 1.2e) for a detailed description of all user commands.

Graphic input is entered through the Tektronix zraphic
terminal via subroutine SCURSR. This data consiscs of
three values: ome byvte of data, entered Zrom the terminal,
and two integers - the X and Y coordinates of the screen
cursor (controlled by the user) when the RETURN kev is
pressed. The program uses this facilitv to control
certain aspects of the plotting.

CALCOMP plot Ziles are the main data input. Thesé files
are produced by CALCOMP subroutines called »y other
application programs. Each record contains a 3+ dyvte
'sync code' - the hexadecimal characters X'1F19191F'
followed bv - CALCOMP 'sentence' in a modified ASCII

code.

On the HSF NASC AS/5-3, thev are in the format of reccrds

produced by the FORTRAN unformattad WRITE statement and

have the following characteristics:
RFCFM = VBS
LRECL = 364
BLKSIZE = 368
In other words, they consist of the 4 bvte svnc code

followed by 360 bytes of data. On the PDP-11,/70, the

TS

e e A R imim

CALCOMP records are of rixed length format and consist
of the svnc code followed by 336 characters of data. See
Appendix D and reference 1.2b for a detailed description

of the input records and the CALCOMP sentences.

d. Processing.

(1

(2)

(3)

The MAIN program is initiated as a task from the operating
system, and has no parameters. It first initializes
global variables as necessary, and then anters the =:ain
loop of the program, which repeats until the user snters

the command 'END' (which terminates the run).

The main loop of the program prompts the user Zor input by
printing 'COMMAND?' at the terminal, and receiviag an

input line from logical unit 5. Upom receiving an

input line, it matches the iInput to the program commands,

and takes the appropriate action. IZ the input cannot de
matched to a command, the program prints a warning message
and repeats the prompt message. After the action is complete,
the program again prompts with 'COMMAND?' and awaits a line
from logical unit 3. (Unless, of course, the preceding
command entered was 'IND', in which case the program exi:ts

the loop and terminates the run.)

Four commands cause immediate action. They are 'PLOT’,
'DUMP', 'HELP' (or '?'), and 'END'. 'END' sets the switch
named 'END', which causes the exit from the main loop.
'"HELP' branches to the intermal procedure HELPER, which
further analyzes the input and calls the extermal subroutine
HELP to provide the user on-line assistance in using the
program. 'PLOT' and 'DUMP' both access a CALCOMP plot

file. Following either of these two commands, the program

begins to access the plot file through the subroutine

ey

FETCH and returns one CALCOMP sentence for each call, until
end-of-file is encountered, and the pregram exits the loop.
The bits PLOT and DUMP, which are set when the commands are
interpreted, determine whether the sentence thus obtained
is interpreted (PLOT is on) or listed on logical unit 8
(DUMP is on.)

If PLOT is on, the program calls subroutine FETCH to get
the next sentence, calls DECODE to extract the values, and,
if appropriate, calls DRAW to follow the instructions of

the sentences.

The remaining thirteen commands control or medify the
performance of the next 'PLOT' command entered by
changing the values of the global variables that

the various subroutines use in performing ctheir

functions.

'BOX' causes the program to call the extermal subroutine
30X to designare the boundaries for the aext plot directly

al

on the screen. See para l.<4.2c.

"ROTATE' accepts the angle of rotation by calling extermal
subroutine ASK, and then modifving the variables PSI,

COSPSI, and SINPSI in respouse.
'SCALE' scales the plot by accepting a scale factor
through extermal subroutine ASK, and then modifving

the matrix CLCRNR.

'FAST' sets the bit EXACT off.

'"EXACT' sets the bit EXACT om.

. e y——

R R NS

————

P ol I SREIeSPISIN

T

(5)

s

'WINDOW' causes the program to call the external subroutine

WINDOW to allow the user to specify the limits of the plot

by entering coordinates in inches.

e ———

'NOWINDOW' loads values into the variables in labeled |
COMMON that cause the entire CALCOMP plot bed to be T
mapped onto the terminal screen, reserving the lower }
part of the screen for operator messages. It then calls

the subroutine DEFALT to initialize the next plot to »

default conditions.
'FRAME' sets the bit FRAME on.

'NOFRAME' sets the bit FRAME off. 1

'"REORIGIN' sets the bits HALT and RRIGIN on.
'"HALT' sets the bit HALT om. 1
'"NOHALT' sets the bits HALT and RRIGIN off.)

'FULLSCREEN' loads values into the variables in the labeled
COMMON block which cause the entire vertical extent of the
terminal screen to be scaled to the short extent of the
CALCOMP plot bed. It then calls the subroutine DEFALT to

initialize the next plot to default conditionms.
See Table 2-01 for a logic diagram of program MAIN.

Conventions - Statement labels are numbered in ascending
order. The CONTINUE statement at the beginning of the main
loop is #30. The statements before each IF are labeled
from 50-900 in increments of 50. The statements controlling
the PLOT/DUMP loop are labeled from 50-1100. Statements

in the 2000's refer to intermal subroutine SCALE. See

3
I
Y
]
L
]
.
:

Table 2-02 for a logic diagram of SCALE. Statements in
the 3000's refer to intermal subroutine ROTATE. See
Table 2-03 for a logic diagram of ROTATE. Statements in
the 4000's refer to intermal subroutine HELPER. Iaternal

subroutines are implemented using the assigned GOTO.

(6) The program requires a TSO region of 128 bytes to execute

successfully.

COMMON Block COMBLK and global variables. (All variables in
COMMON are declared and initialized in a BLOCK DATA subprogram.)

In the following descriptions, reference is made to parameters
extracted from CALCOMP sentences. In general, the data transmitted
in this form is identified by letters that precede numeric or

string data. The general content of the parameters is as follows:

A,B Descriptors for dashed lines; ignored by this program,
which uses Tektronix subroutine DASHA.

D Transwits pen number, or pen-up/pen~down information.

E,F Horizontal and vertical length, and hence implicitly,

orientation, of characters to be plocted in strings.

G Designates action to be taken.

I,J Coordinates of the center of a circle.
M Halt code.

N Sentence number.

P,Q,R,S The horizontal and vertical scaling matrix applied
to CALCOMP coordinates to effect scaling and rotation
within the CALCOMP system.

The search address, used for operator intervention.

u,v Horizontal and vertical offsets applied by the
CALCOMP system.
XY Horizontal and vertical coordinates.

10

-

PSR

Additional explanations are contained in Reference 1.2b. The

structure of the sentences within the records is described in

Appendix D.

Global Variables:

AVALUE

BDCRNR (3,2)

BVALUE

CHCRNR (3,2)

CHVRTC (3,2)

CLCRNR (3,2)

CLITK (3,2)

COSPHI

COSPSI

The A parameter set by default or extracted
from a CALCOMP sentence.

The coordinates, in CALCOMP units, of the
points which correspond to the lower left,
upper left, and upper right cormers of the

screen, respectively. Mnemonic: Bed-Corners.:

The B parameter set by default or extracted from
a CALCOMP sentence.

The coordinates, in inches, of the lower left,
upper left, and upper right corners of the
plotted area. Mnemonic: Inch-Corners.

The values of BDCRNR expressed in inches.

Mnemonic: Inch-~Vertices.

The coordinates, in CALCOMP units, of the
lower left, upper left, and upper right corners

of the plotted area. Mnomonic: CAL-Cormers.

The transformation matrix to go from the
CALCOMP coordinate system used in the plot file
to the Tektronix unit coordinate svstem passed to

the Tektronix software. Mnemonic: CAL-to-Tek.

The cosine of PHI.

The cosine of PSI.
11

COSPSX

COTPHI

CSCPHI

CURVE

DFLTON

ENDFIL

EVALUE

EXACT

FILOPN

FVALUE

The cosine of PSIX.

The cotangent of PHI.

The cosecant of PHI.

A logical variable set on if the program is
'in a spline interpolation' and set off when

the program 'goes out of spline interpolation’.

A logical variable used to communicate the
source of the screen window now in use. It
is on if the limits are set within subroutine
DEFALT, or off if the proportions were
establisned by the WINDOW command. Mnemonic:
Defaulc=-On.

A logical variable set on when endfile
is reached on the plot file. Mnemonic:
End-File. .

The E parameter exrracted from a CALCOMP sentence.

A logical wvariable set on if curves are to be
plotted as closely as possible, or off if they
are to be approximatad by line segments.

A logical variable set on if the plot file has
been opened; off otherwise. Mnemonic:
File~-Open.

A logical variable set cn to cause the execution

of the actions of the 'FRAME' command.

The F parameter extracted from a CALCOMP sentence.

12

e ey

e ¢ vitban v 00

e

N ey e

GVALUE

HALT

HEIGHT

INFILE

IVALUE

JVALUE

LENSNT

LETTER

LVALUE

MVALUE

NSNINC

(26)

The G parameter most recently extracted from
a CALCOMP sentence.

A logical variable set on to cause the program
to activate the screen cursor when a temporary

halt code (Ml) is encountered.

The height of characters to be drawn bv operator
message request or symbol plorts. It is derived
from EVALUE, FVALUE, and NVALUE, and is stored

as an integer multiple of 8.

The logical unit number of the file to be

plotted. For the NASC AS/5 it is defaulred to 30.
For the PDP-11/70 it is supplied by the user.

The I parameter extracted from a CALCOMP sentence.
The J parameter extracted from a CALCOMP sentence.
The length of the CALCOMP sentence being
processed, in bytes.

An array containing the letters of the alphabet.

The length of the character string used in

symbol plots or operator message displays.

The halt code extracted from a CALCOMP sentence

or reset to zero by the plot routines.

The N parameter most recently extracted

rom a CALCOMP sentence.

— i

a8

g ey

e

NVALUE

OLDX

OLDY

PHI

PLOTNG

PNDOWN

PREVX

PREVY

PSI

The factor used by CALCOMP routines applied
to compute the height of plotted characters.
NVALUE equals 1.00 for noncentered characters
and equals 1.875 for centered characters.

See reference 1l.2b for further information.

The previous value of XTEK. Used to reset the

X coordinate of the origin.

The previous value of YTER. Used to reset the

Y coordinate of the origin.

The angle, expressed in radians, whose tangent is
TANPHI. This angle, and its trignometric
funcetions, govern the proportions of the plotting

area used on the CRT face.

A logical variable set on when the program
begins processing a plot file. It is used to
control the exit from the plotting loop.

Mnemonic: Plotting.
A logical variable set on if the action is to
draw; off if it is to move. Mnemonic:

Pen~Down.

The previous value of XTEK. Used when value
of XTEK changes.

The previous value of YTEK. Used when value
of YTEK changes.

The angle, in degrees, by which the plot or

window is to be rotated about the origin.

14

——
PRSPV

e~
bi

PSIX

PVALUE

QVALUE

RRGIND

RRIGIN

RVALUE

SCCRNR

SECPHI
SINPHI
SINPSI

SINPSX

(3,2)

The angle, in radiams, by which the previous

plot was rotated about the origin.

The P parameter extracted from a CALCOMP sentence

or set by default.

The Q parameter extracted from a CALCOMP sentence

or set by default.

A logical variable set on either when the
user enters '"REORIGIN" or when a CALCOMP
sentence contains a reorigin imstructionm.

Mnemonic: Reorigin-Indicator.

A logical variable set on to allow the
user to control the origin of coordinates

with the screen cursor. Mnemonic: Reorigin.

The R parameter extracted from a CALCOMP sentence

or set by default.

The coordinates, in Tektronix units, of the
lower left, upper left, and upper right corners
of the CRT area available for plotting.
Mnemonic: Screen-Corners.

The secant of PHI.

The sine of PHI.

The sine of PSI.

The sine of PSIX.

- w— e A e e———

A ————— v e o tn

SNTNCE (128)

SPCIL

SPLLEN

SPLTXT (64)

STEP

SVALUE

TANPHI

TKCRNR (3,2)

TVALUE

UVALUE

VVALUE

Ap array which contains the CALCOMP sentence ‘

being processed. »

The ASCII character associated with the most t

recently received CALCOMP sentence containing

a single symbol request (G53 code). i

The number of bytes of data in SPLTXT.

An array containing the untranslated ASCII
character string transmitted with the most

recent symbol plot, special symbol plot, or

operator message request (G?Z, G53, or G55 code).

A logical variable set on when the current

Tektronix coordinates are computed.

The S parameter extracted from a CALCCMP sentence
or set by default.
The height of the available plotting area

divided by the width of the available plotting

area; i.e., the tangent of PHI.

The coordinates, in Tektromix units, of the
lower left, upper left, and upper right cormers
of the plotted area. Mnemonic: Tek-Cormers.

The search address from a CALCOMP sentence.

The U parameter extracted from a CALCOMP sentence

or set by defaulrt.

The V parameter extracted from a CALCOMP sentence

or set by default.

16

P

XBFORE

XCAL

XOFST

XORG

XTEK

YBFORE

YCAL

YMIN

The previous value of XCAL.

The most recently received X value in

CALCOMP units, from a CALCOMP sentence.

The largest rescaled* X value, in CALCOMP

units, received during the current plot.

The smallest rescaled* X value, in CALCOMP

units, received during the current plot.

Amount of the most recent displacement in the
X direction, in CALCOMP units, due to

reorigin. Mnemonic: X-Offset.

X-coordinate of the most recent origin hefore

reorigin.

The X coordinate, in Tektronix units,
derived from the current values of XCAL,
YCAL, and CLTTX.

The previous value of YCAL.

The most recently received Y value, in
CALCOMP units, from a CALCOMP sentence.

The largest rescaled* Y value, in CALCOMP

units, received during the current plot.

The smallest rescaled* Y value, in CALCOMP

units, received during the current plot.

"

YOFST

TORG

TTEK

*Note:

Local

(1)

(2)

Amount of the most recent displacement in the
Y direction, in CALCOMP units, due to reorigin. :
Mnemonic: Y-Offset. i,
!
Y-coordinate of the most recent origin before i
reorigin.
The Y coofdinate, in Tektronix units, derived
from the current values of XCAL, YCAL, and
CLTTK.
Rescaled, in the descriptions of ™AX, XMIN, YMAX, YMIN,
means the X and Y values resulting after the current values
of UVALUE, VVALUE, PVALUE, QVALUE, RVALUE and SVALUE
are applied to the XCAL and YCAL values extracted from the
CALCOMP sentences.
Variables:
SCLRAT - Scale ratio that user enters as part of the

"SCALE'" command.

CALCOMP Proportions -~ These variables are the values used

when the CALCOMP piotter bed is mapped onto the terminal
screen, reserving the lower portiom of the screen for

operator messages.

(a) CLSCCR (3,2) - The coordinates, in Tektronix units, of
the lower left, upper left, and upper right corners of
the CRT available for plotting. Mnemonic:
CALCOMP~Screen-Corners.

Actual values: 0, 721
0, 3120
4095, 3120

18

(k) CLBDCR (3,2) - The coordinates, in CALCOMP units

of the points which correspond to the lower left,

i upper left, and upper right cormers of che screen

t respectively. Mnemounic: CALCOMP-Bed-Corners.
Actual values: 0, 0

! 0, 243840

416360, 243840 !

(¢) CLCHVR (3,2) - The values of CLBDCR expressed in
inches. Mnemonic: CALCOMP-Inch-Vertices. i
Actual values: 0, O g

0, 48

82, 48

R

(d) CLPSI - The angla between the lower boundary of the

ey

plot area and the diagonal of the plot area expressed
| in radians. Mnemonic: CALCOMP-PSI.

Actual value: 0.352994

(e) CLTANP, CLCOTP, CLSINP, CLCOSP, CLSECP, CLCSCP are the

o

tangent, cotangent, sine, cosine, secant, and cosecant
: respectively of PSI when CALCOMP proportioms are in
1 force.
;§ Actual value:
; Tangent: .3858364 Cosine: 0.8628374
: Cotangent: 1.706961 Secant: 1.158697 ;
| Sine: 0.5054816 Cosecant: 1.978312 :
i ;
i

(3) Tektronix Proportions ~ These variables are the variables
used when the plot is to use the entire screen of the

Tektronix terminal.

19

(a)

(®)

(e)

(d)

(e)

TKSCCR (3,2) - The coordinates, in Tektronix units of
the lower left, upper left, and upper right cormners
of the CRT available for plotting. Mnemonic:
Tektronix-Screen-Corners.
Actual values: 0, O
3, 3120
4095, 3120

TKBDCR (3,2) - The coordinates, in CALCOMP unics,

of the points which correspond to the lower laft, upper

left, and upper right corners of the screen respectively.

Mnemonic: Tektronix-Bed-Corners.
Actual values: 0, 0
0, 243840
320040, 243840

TRKCHVR (3,2) ~ The values of TKBDCR 2xpressed in
inches. Mnemonic: Tektronix-Inch-Vertices.
Actual values: 0, 0
0, 48

TKPSI - The angle between the lower boundarv oI
the plot area and the diagomnal of the area, in
radians. Mnemonic: Tektronix-PSI.

Actual value: 0.631077

TKTANP, TKCOTP, TXSINP, TKCOS?, TKSECP, TKCSCP are the
tangent, cotangent, sine, cosine, secant, and cosecant
raespectively of PSI when Tektronix proportions are

in force.

20

e o e o o <

(4)

(3

(6)

Actual values:

Tangent: .7619048 Cosine: 0.7954317 -
Cotangent: 1.3125 Secant: 1.257179
Sine: .6060432 Cosecant: 1.6500473 i

Keyword Variables - These variables are each set zo the
commands used by the CPS.
(a) KWPLOT - the word "PLOT"
(b) KWDUMP - the word '"DUMP"
(¢) KWEND - the word "IND"
(d) KWQUES - the character "?"
(e) KWBOX - the word "BOX"
(f) KWROT - the word "ROTATE"
(g) KWSCAL - the word "SCALE"
(h) KWFAST ~ the word "FAST"
(i) KWEXAC =~ the word "EXACT"
(j) EKWWIND ~ the word "WINDOW"
(k) KWNWIN - the word "NOWINDOW"
(1) KWHELP ~ the word '"'HELP"
(m) KWFRAM ~ the word ''FRAME"
(n) KWNFRM - the word ""NOFRAME"
(o) KXWRORG -~ the word "REORIGIN" ;
{(p) KWHALT - the word "HALT" ;
() KWNHLT - the word "NOHALT" ‘
(r) KWFULL - the word "FULLSCREEN"

REPLY2, REPLYS4, REPLY3, REPLY6, REPLY7, REPLYS8, REPLYY,
and REPL11l are used to extract 2 character, 4 character,
5 character, 6 character, 7 character, 8 character, 9 character,

and 11 character terminal responsas respectively.

LOCFLG ~ A logical variable which is turned off until user
enters a correct value for SCALE or ROTATE, in which case it

{s turned on. Mmemonic: Local-Flag.

21

(7) BLKREP, BLKRP1l, BLKRP2 - These variables are trurned on when
the user enters a blank value for SCALE or ROTATE. BLKRP1

and BLKRP2 are used because the PDP-1l Fortran compiler
allows only 5 continuation cards, unless overridden, and
more than 53 lines are needed to test the values of the
REPLY array. Thus, BLKRP1 is turned on when the first

8 members of REPLY are blank; BLKRP2 is turned on when
aembers 9-15 of REPLY are blank; BLKREP is turned on

when both 3LKRP1 and BLKRP2 are turned on.

[39
.
ts

Specialized Subroutines.

a. ASK

(1) T1dentification: ASK

(2) This subroutine is used for prompting within the program
where needed. Given an integer parameter as argument,
it prints the corresponding prompting message on the
terminal. When the user enters a reply, the rout%ne
translates all lower case letters to uprer case and returas

the translated reply to the calling routine.

(3) Values of Integer Parameter:
"1" - Prompt saying ''COMMAND?"
2" - Prompt saving "ANGLE (DEGREES)?"
"3" - Prompt sayving ''SCALE FACTOR?"
"4" - Prompt saying "X1=a2"
"5" - Prompt saying '"Yl=?"
"6" - Prompt saying "'X2=7"

"7" - Prompt saying ''¥2=?"

b. BLANKR
(1) Identification: B3LANKR

o amat

e

—

(2) Functions:

c. BOX

Compute the transition matrix from CALCOMP coordinates
to Tektronix by calling LLSQ, using the current values
of CLCRNR and TKCRNR.

Initialize the plot by blanking the screen and
establishing window values through Tektronix

subroutines.
Draw the frame around the plot, if required.

Replace the existing window parameters, by
calling LLSQ and TRANS using the current values of
CHCRNR, if required.

Check for errors in the transformation specifiad,

and terminate the plot if any are discovered.

(3) Processing: See Table 2-04 for a logic diagram of this

subroutine.

(1) Identification: 30X

(2) Functions:

Accept boundary data for the next plot directly Zrom
an existing plot, using the screem cursor.
Display the boundaries computed from this data om the

current plot, for user inspection.

(3) Processing:

The routine assumes that the four courners of the CRT

area being used are numbered 1 through 3, clockwise,

23

e

starting at the lower left cormer. It accepts screen
coordinates corresponding to any two of them, in
arbitrary order, and computes the other two. The
first three thus computed are used to compute the
corresponding values of CLCRNR, and all four are used

to draw the boundaries of the next plot on the screen.

The first part of the program uses the subroutine

SCURSR to accept two character value and two pairs

of coordinates from the screen. The character values

must be distinct character integers, 1 through 4.

The coordinates specified must be distinct. Any reply
that does not meet these conditions is ignored, and

a prompt 'INVALID REPLY' is printed. The user manipulates
the screen cursor thumbwheels to place the crosshair

at a desired point, and enters the numeral designating the
corner desired. When two valid values have been accepted,

the processing continues.

The routine Jdetermines which two corners have been
specified and computes the coordinates, in Tektronix
units, of the two missing cormers of the rectangle
bounding the desired plot area. This computation
uses the trigonometric functions specified in the
labeled COMMON block, which then computes a rectangle
whose aspect ratio is that chosen previously to be
either that of the full CALCCMP bed (default or
"NOWINDOW') or that of the full Tektronix screen
('FULLSCREEN').

When all four corners are known, the routine inverts
the transformation for the first three points to
establish new values for CLCRNR, and draws the

rectangle boundarv on the terminal screen. It then

24

displays the screen cursor once more, to dump the

Tektronix routines' buffer and to allow the user to

control the location of the next printed output.

See Table 2-05 for a logic diagram of BOX.

(4) Local Variables.

(a)

specified to enclose the box.
(b)
()
(d)

are known.
(e) PNT12 - turned on
(f) PNT13 - turmed on
(g) PNT14 ~ turned on i
(h) PNT23 -~ turned on
(i) PNT24 ~ turned on i
(j) ©PNT34 - turmed on i

d. CALTER
(1) Idencification: CALTEK

POINTS(2) - The numbers of the corners that the user

X(4) - The X coordinates of the four cornmers of the box.

Y{(4) - The Y coordinates of the four cormers of the box.

RHO2, RHO3, RHO4, THETAZ, THETA3, THETA4 - These

variables are used to derive the coordinates of all four

corners of the box when the coordinates of two corners

(2) Functious:

Convert the CALCOMP coordinates given to the Tektronix

cormners

corners

corners

corners

corners

corners

N N =

w N

coordinates needed for plotting.

and
aand
and
and
and

and

[3¥]

F o K

were

were

were

were

were

were

entered.
entered.
entered.
entered.
entered.

enfered.

Establish values for the largest and smallest CALCOMP

coordinates encountered during a plot.
Establish the values of XBFORE and YBFORE, when a

circle or circular arc is to be plotted, i.e. when

GVALUE is 2 or 3.

25

(3) Processing:

If GVALUE 1is 2 or 3, the current value XTEK and YTEK
become the values of XBFORE and YBFORE.

et
s et Amada

The rotations and offsets specified by PVALUE, QVALUE,
RVALUE, SVALUE, UVALUE, and VVALUE are used to form
intermediate variables XPRIME and YPRIME (the rescaled
coordinates). The rescaled coordinates are still iIn
CALCOMP units, and are the effective CALCOMP coordinates |

that were specified in the plot file.

v

. The rescaled coordinates are then mapped into Tektronix

coordinates using the matrix CLTTK. Meanwhile, the bit

S

STEP is turned on to indicate that the current Tektronix

coordinates have been computed.

. The maximum and ainimum values of the rescaled coordinates

are updated.

RSPy

See Table 2-06 for a logic diagram of CALTEK.

e. CIRCLE
(1) Identification: CIRCLE

(2) Function: Draw circles or ellipses. !
(3) Processing:

Locate the center of the circle (XCENTR, YCENTR) using
XBFORE and YBFORE, IVALUE, and JVALUE bv adding XBFORE to
IVALUE and YBFORE to IVALUE. This vields the coordinatas

of the center of the circle.

Determine whether to draw a full or partial circle by
comparing the distance from the center to (XBFORE, YBFORE) to
the distance from the center to (XCAL, YCAL). If the distances

are equal, draw a partial circle - if not, draw a full circle.

. Compute the value of the angular increment: If the logical

s ke vl

variable EXACT is on, DELTA is the smallest increment

26

0

which will cause a Tektronix coordinate change of
3 1 unic. 1If not, it is 1/32d of the angle subtended

|
by the circle. i:
i

The sign of DELTA is determined by the direction
of the circle. 1If GVALUE is 2, the circle is clockwise, ?
and DELTA is negative: If GVALUE is 3, the circle is

counterclockwise and DELTA is positive.

Compute coordinates in raw CALCOMP coordinares for 7
points on the circle, call CALTEK to convert them
to Tektronix coordinates, and draw to the points

thus determined, until the circle is completed.

See Table 2-G7 for a logic diagram of CIRCLE.

(4) Local Variables:
(a) XCENTR - X coordinate for center cf circle (integer).
(b) YCENTR - Y coordinate for center of circle (integer). H
(¢) DET - Determinant of matrix CLTTRK (CAL-to-Tak
transformation matrix).

(d) STANG - Starting angle.

(e) ENDANG - Ending angle. u
(£) DELTA - Angular increment. f
(g) GTANG = Logical variable turned on zither whem the g;*er

is greacer than the ending angle /when the increment is

positive) or when the angle is less than :he anding
angle (when the increment is negacive). Meaning:
Greater angle.
(h) SIGN ~ The sign of the angular increment. Equals | when
DELTA is positive. Equals -1 when DJDELTA is negative.
(i) CENTRX - X coordinate for center of :ircle ‘Iloating
point).

(3) CENTRY - Y coocrdinate for center >f czircle ‘Zloating

point).

f. DECODE

(1) Identificatiom: DECODE

[P

(2) Function: Extract values from CALCOMP sentences and place

them into the appropriate global variables.
(3) Processing:

. One complete sentence is processed at 3 time. The
rourine scans the sentence, locating the letters that
identify numeric parameter values. For each
identifying letter, in turn, the numeric characters
immediately following it are extracted and converted

into numbers.

Depending upon the identifyving letter, the approoriate
global variable is assigned a new value. Generally,
the global variable name is constructed from the
identifying letter followed bv 'VALUE', so that the
value for J goes in JVALUE, etc.

. There are some exceptions:
D1 and D2 CALCOMP codes are used to set the bi:‘PNDOWN on
or off, respectively. When a G53 code (special
character plot) is encountered, the value of SPCIL

(special character) is used to set NVALUE to either

1.875 or 1.000 as appropriate.

When a G5 code is encountered, the GVALUE becomes 5

on the odd-numbered encounters, and O on even-anumbered
encounters. This is done because G5 codes come in
pairs. The first of a pair begins a curve plot - the
other ends it. See the discussion of subroutines

DRAW and SPLINE for details.

See Table 2-08 for a logic diagram of DECODE.

(4) Local Variables:

(a) INTVAL - current integer value within CALCOMP svstem.

28

PN R A S e

g.

T s

(b) Pointer variables ~ below is list and meanings: }
PNTR - Pointer to current letter coade
NEXT - Pointer to next letter code }
PNTRHD - Hold area for PNTR 14
LEN - Length of sentence between PNTR and end

of sentence. ;
(¢) ENDFND - logical variable that is turned onm when ‘
end of CALCOMP sentence is found. f

(d) RSTSEN(128) - Remainder of CALCOMP sentence from |
PNTR to the end. Mnemonic: {

Rest-of-Sentence.

DEFALT

(1) 1Identification: DEFALT

(2) Function: Establish the default scaling and rctation
parameters.

(3) Processing: Default values are assigned to the sgaling and
rotation parameters. The bit DFLTON is set on to indicate default
scaling and rotation parameters are being used. A call to OPMSG
is made to initialize the operator message parameters.

(4) See Table 2-09 for a logic diagram of DEFALT.

DRAW

(1) 1Identification: DRAW

(2) Functions:

Interpret the command words contained in the data
extracted from the current CALCOMP sentence, and call

the subroutine required to take the actiomn.

At the end of each plot, set up the parameters needed

for optim.! plotting of the same file.

(3) Processing:
Obtain new variable values by calling DECODE and CALTEK.)
Inspect MVALUE for non-zero halt codes. f

. If MVALUE is 1, a temporary halt has been commanded.
If the bit HALT is on, activate the screen cursor to
accept one byte of data, plus coordinates, from the
terminal. If Ehe byte is a p or a P, suspend the plot “
by turning the bit PLOTNG off. If the byte is a
period (.) stop the plot by calling WRAPUP, an internal

procedure. Reset MVALUE to zero.

. If MVALUE is 2, reset MVALUE to zero, then stop
the plot by calling WRAPUP.

If MVALUE is zero, inspect GVALUE for the action
to be taken, and take them. The values of GVALUE

and the actions taken are as follows:

. 1 Draw or move to the current coordinates (XTEK,
YTEK) .

2,3 Call CIRCLE to draw circles and circular arcs.

Call SPLINE to plot curve segments. Since the

coordinatres used in a spline plot are preceded

and followed bv a G5 sentence, the function of

the G5 code is £o start the spline interpolation,
or to stop it, al.ermately. This program accom-
plishes this bv code both in DECODE and here.
Within DECODE, if a GS code is encountered, and
GVALUE is not 5, it is set to 5. If GVALUE is 5
it is set to zero. Therefore GVALUE is 5 only
when spline interpolation is going on. The call to
SPLINE sets the bit CURVE omn to indicate spline
interpolation (used later).

52 Call STNDRD to plot a character sting.

53 Call SPECL to plot a single special character.

30

i. FETCH

(1)

(2)

25 Effect a reorigin of the coordinata system, by
replacing the last row in the array CLTTK. II the
bit RRGIND (reorigin indicator) is not yet turned
on, turn it on, set the values of XOFST and YOFST
to XBFORE and YBFORE, and set XORG and YORG to
the last row of the array CLTTK (current origin).
If the bit RRIGIN for a user desired reorigin
is on, the new values for the origin are the
X, Y coordinates returned from the screen cursor.

If not, they are the present values of QOLDX, OLDY.

The external subroutine WRAPUP is used to terminate

a plot and set optimal values for replotting the same
file. The maximum and minimum values of XTEK and
YTEK have been collected in XMAX, YMAX, XMIN and YMIN.
They are compared to the proportions of the screen
that are currently in use, and appropriate values

are assigned to the array CLCRNR. WRAPUP is called as

a separate subroutine.

See Tables 2-10 and 2-11 for logic diagrams of DRAW
and WRAPUP respectively.

Identification: FETCH

Function:

Handles all communication with the plot files; includes
opening and closing the file, reading records, and

extracting CALCOMP sentences from them. The functions

are controlled by am integer argument. When it is zero,

the procedure places the next CALCOMP sentence into the
global variable SNTNCE, in character form. £ a quoted string
is encountered, its CALCOMP ASCII wvalue is placed into SPLTXT.

31

(3

In addition, if the string is only one byte long, its CALCOMP
ASCII value is placed into the lower-order byte of SPCIL.

Processing:

FETCH has one argument, IFUNCT, which has three possible
values. When IFUNCT = 0, the anext CALCOMP sentence is
retrieved. When IFUNCT = 1, the plot file is opened. When
IFUNCT = 2, the plot file is closed. If none of the above

values are present, the program will scop with a code of 1040.

The formation of a CALCOMP sentence from che data in the plot
file records depends upon the following observations about
the structure of the records and the structura of the

sentences:

Each record is a fixed length with the first four bytes
containing '?99?', the 'sync code', with the

remaining bytes of the record containing the data.

The end of the data is marked by the character 'S’
not in a quoted string.

A quoted string is delimited by the character '!'

in pairs (for example, the string - !THIS IS A HEADING!).
Tt

The character may appear in a quoted string only

if the string is one byte long — resulting in the
treey e Tt

pattern transmitting the character

A CALCOMP sentence 1s terminated by a period ('.') outside
of a quoted string (for example, the sentence N25D2XY.

terminates with a period).

CALCOMP sentences may be broken up over more than

one physical record.

See Appendix D for further description of a CALCOMP file

and examples.

The routine maintains a set of bit variables and integer
pointers as place and status markers to allow for various

configurations of sentences in records.

32

P I YN

The variables are:

RCDNDD - Requests that a record be read. Mnemonic:
Record-Needed.

SCANST - Offset of the next uninspected bvte.
Mnemonic: Scan-Start.

BLDST - Offset of the next byte to be placed into
the sentence. Mnemonic: Build-Start.

INSTRG - A quoted string delimiter has been found
on the lefrz,

TERMNT ~ Offset of the next '.' after SCANST.

BREAR - Offset of the next 'S$’. i

STRSTT ~ Offset of the next '!'.

Dtk

EXCL - Equal to "!'. On the NASC, exclamation pcints

S ey Tem e s

cannot be printed.

The processing proceeds by using the aforementioned
variables and the substring functions to control the '
formation of the sentence. The code is straight- 1
forward. Note that the sentaence is restricted to be %1
512 bytes long, and the quoted strings are restricted to '
255 bytes. This is expected to be adequate for any

realistic use of the plotter. See Table 2-12 for a s

logic flow of FETCH.

(1) 1Identification: HELP

{2) Function: Place program messages on logical unit 6,

(3) Processing:
HELP has one argument, MSGNO, which determines the message to
be printed. Actual message numbers are listed below:
MSGNO=1 - Prints out opening message.
MSGNO=2 - Prints out list of available commands.
MSGNO=3 - Prints out information om how to use "PLOT" command.

MSGNO=4 - Prints out informatiom on ahow to use "DUMP"

command.
33

HAPY TN

information

information

information

information

information

informatcion

information

information

information

informatcion

information

information

mnessage say

information

on

on

on

on

on

on

on

on

on

on

on

on

ing

on

Prints out information on

"FULLSCREEN" command.

MSGNO=5 - Prints ouc
command.
MSGNO=6 =~ Prints out
command .
MSGNO=7 -~ Prints out
command .
MSGNO=8 - Prints out
command.
MSGNO=9 - Prints out
command .
MSGNO=10 -~ Prints out
command.
MSGNO=11 - Prints out
comand.
MSGNC=12 - Prints out
command .
MSGNC=13 -~ Prints out
commang.
MSGNO=14 - Prints out
command.
MSGNO=15 - Prints out
command.
MSGNO=16 - Prints out
command.
MSGNO=17 - Prints out
MSGNO=18 - Prints out
command.
MSGNO=19 -
k. OPMSG
(1) Identification: OPMSG
(2) Functiomns:

how

how

how

how

now

now

how

how

how

how

how

now

to

to

to

to

to

to

to

to

use

use

use

use

use

use

use

use

use

use

use

use

""SCALE"

”RCTATE”

l'rdIN-Dow"

""NOWINDOW"'

"HALT"

"NOHALT”

Hm"

""NOFRAME"

"FRAME"

”BOX"

"RECRIGIN"

Ty o o~ it
TAZ Y

"INVALID COMMAND".

how to use

how tO use

" "
EXACT

Process operator messages, or reset initial

conditions for them.

34

a e ¥ ames MRl

g e
P S

(3) Processing:
OPMSG has one argument, FUNCT. When FUNCT = 0, the initial
conditions for the messages are reset; otherwise operator
messages are processed. The routine sets the character
size based upon the length of the operator messsge. It
computes the location for each line to be printed, starting

below the default bottom limit at the line ¥=720 on the i
CRT screen, writes the message at the appropriate location, !

and activates the screen cursor. .

If 'RRIGIN' is on, it resets the origin of)

coordinates by replacing the last row of CLTITK with i
the values of IX and IY recturned f{rom the screen cursor.
It then resets the screen window to its former values

and returns. See Table 2-13 for logic flow of OPMSG.

(4) Local Variables:

(a) XSTR(63) -~ Stores contents of the operator message
to be displaved on the terminal. 1
(b) LINE ~ The actual line on the terminal where the f
message is to be displayed, normalliy at cthe ;
botrom of the terminal. :
(¢) LINES - The number of lines in the operator nessage.

(d) POINTS - Number of roints already plottad.

1. SPECL I
(1) Identification: SPECL

(2) Function: Plot a single special character on the screen.

(3) Processing:
. Call SYMHGT to establish the orientation of the
character in the variables CSTHET and SNTHET.

* If invalid values are detected for CSTHET, SNTHET, :

or HEIGHT, the program returns to the caller.

35

Otherwise, it draws the character, using the value of
SPCIL as an index to <he array POINT, which, in tumm,
contains pointers to the array ENTRY, which gives

drawing directions Ior each character.

For any given special character, (SPCIL), POINT

(SPCIL + 1) is the subscript of the first value in

ENTRY for that character. POINT (SPCIL + 2) is the
subscript of the value in EZINTRY following the last value
for that character. For ease of addressing, PSTART is
set to POINT (SPCIL + 1) and PBND is set to POINT

(SPCIL + 2) - 1. VNote, the subtraction of 1 is needed in
order to get the last value for a givem character since
POINT (SPCIL + 2) points to the first value in ENTRY for

the next character.

The values in ENTRY are in pairs. They give the
direction and length of the next move or draw required

by the character.

The X value is first, followed bv the Y value. If
the X value is 100 or more in absolute value, it is

regarded as a move -- otherwise it is a draw.

The length of the moves and draws are integers {rom
0 to 8, inclusive. A move is coded, in the X value,
with an absolute value 100 greater than its true value,

and with the appropriate sign.

The signs are: + for up or right.

- for down or lefr.

The characters are drawn on an 8 by 8 unit grid,
which is magnified by HEIGHT and rotated using CSTHET
and SNTHET to compute new values for XCAL and YCAL.

CALTEK is used to comvert the XCAL and YCAL values to
XTEK and YTEK.

The draw or move, as appropriate, is domne.

36

[

o~ S,

D AT LTTARE

For example, the letter 'A' has the ASCII value 49
when plotted as a special character. The corresponding
values are:
POINT (50) = 767
POINT (51) = 783
ENTRY (767) to ENTRY (782) are
0,6,2,2,2,0,2,-2,0,-6,-106,4%4,6,0,-106,-4

See Figure 2-03 to see how the plot works.

The first 16 values are centered, and the remaining 48
values are started from the lower left cornmer. In either
case, the beam returns to the starting position after

the character is completce.

See Table 2-14 for logic diagram of SPECL.

Local Variables:

Due to limitations in the number of continuation statements
allowed in FORTRAN, several smaller arrays have been set
equal to the actual values of the arrays POINT and ENTRY.
The values are placed in POINT and ENTRY through gquivalence

statements.

(a) POINT(63) - Contains pointers to the array ENTRY.
The small arravs used to initialize POINT are

described below:

PNTSPC(32) - Contains pointers to the array ENTRY for
all characters whose ASCII representatiocn is less than
the ASCII representation for zero. Mnemonic:

Pointer-to-Special-Characters.

PNTNML(33) - Contains pointers to the arrav ENTRY
for all characters whose ASCII representation is
greater than or equal to that of zero. Includes
pointers to all numerics and alphabetic characters.

Mnemonic: Pointer-to-Normal-Characters.

37

.
» i
|
(0,6% . |
|)
(-106,4) 2. ' y - L - (6,0)o
= '
~ P d
b 2 < ° . s o 3 »]
~ yd
1 o . h (Y s ° 1] » [|}
d
~
7 “
p e L 0 - * <" .]
s <
e W7 ‘
Start point . . s . s > .
(-106,-4) (2,-6)

The values of ENTRY for the letter A among the special characters are:
(0,6,2,2,2,0,2,-2,0,-6,-106,4,6,0,-106,-4)
resulting in the moves and draws shown above.

DRAW

MUVE f e e e — = n o = = ==~

Note: Same technique is used to draw standard ASCII characters and

special characters.

‘ Figure 2-03: Drawing the Letter 'a’
i
b

38

(b)

ENTRY(973) - Gives drawing directions for each
special character. The small arrays used to initialize
ENTRY are described below:

LSBLK1(66), LSBLK2(58), LSBLK3(76) - Contains drawing
directions for special characters whose ASCII representa-

tion is less than the representation for a blank.

Mnemonic: Less-than~blank.

BLKCHR(6) - Contains drawing directions for blank

characters. Mnemonic: Blank Character.

SPCHR(58), SPCHR2(64), SPCHR3(74), SPCHR4(24) -

Contains drawing directions for all special characters
whose ASCII representation is greater than that of blank
and less than that of zeroc. Mnemonic:

Special-Characters.

NUMO3(80) - Contains drawing directioms for the

numeric characters Irom O to 3.

NUM46(58) - Contains drawing directions for the

numeric characters from 4 to 6. '

NUM79(64) - Contains drawing directions for the

numeric characters from 7 to §.

~

NUMSYM(72) -~ Contains drawing directions for all special
characters whose ASCII representation is greater than the
one for 9 and less than the representation of the "at
sign",@. This array is called NUMSYM because it contains
drawing directions for numeric symbols used in

comparisons.

QUESAT(66) - Contains drawing directions for the

question mark and the at sign.

LETAE(82) - Contains drawing directions for the

letters from A through E.

39

LETFJ(70) - Contains drawing directions for the

letters from F through J.

LETKO(60) - Contains drawing directions for the

letters from K through O.

(c) SNTHET, CSTHET - The sine and cosine of the angle of
orientation for the special character to be printed.

These arguments are returned from subroutine SYMHGT.

(d) DELTAX, DELTAY - Change in the X and Y directiomns

respectively, while character is being drawnm.

(e) PSTART ~ The subscript of the first value in ENTRY
for a given character. Equal to POINT (SPCIL +1).

Mnemonic: Pointer-Start.

(£) PBND ~ The subscript of the last value in ENTRY for
a given character. Equal to POINT (SPCIL +2) -1.

Mnemonic: Pointer-Bound.

a. SPLINE
(1) Identificationm: SPLINE

(2) Function: Simulate the spline interpolation Iunction of
the CALCOMP plotter.

(3) . The logic of this subroutine is Joverned by the sequence
of sentences produced for this function in the CALCOMP
file. Spline interpolation is initiated by a G5 code, then
the necessary coordinate pairs are supplied in following
sentences, and finallv a second G5 code terminates the inter-
polation. This is implemented in subroutine DECODE bv setting

GVALUE to 5 on the first G5 call and to zero on the

second; i.e., to 5 on the odd-numbered occurrences

Fod o - o

of the G5 code and to zero on the even~numbered occurrences

thereafter.

The effect of this is to turn spline interpolation
"on'" and "off" by altermate occurrences of the

GS code in sentences.

Once the G5 code is detected, SPLINE is called

for the sentence containing the G5 code and each
subsequent sentence until GVALUE is set back to zero.
The first call to SPLINE on a new interpolacion

is accompanied by the previous values of XTEK and
YTEK, so that five calls are needed before the

firsc interpolation takes place. After that,

each subsequent call results in another segment

of the curve being plotted.

If the:. parameter FUNCT is zero, reset all variables
to initial conditions, and return. (This is turning

the spline function off.)
The following is what happens when FUNCT is non-zero.

Increment COUNT by 1, and store the current values
of XTEK and YTEK in a work vector.

If COUNT is 5, then the plotting is effected. II

the flag EXACT is .TRUE., then the interpolated values
are computed using a polynomial fit with a step size
just large enough to provide a movement of one
TEKTRONIX unit at each step. If EXACT is ,FALSE.,
then the interpolation is omitted, and a straight

line is drawn between the points.

In either case, the latest four points are moved up,

so that the oldest point is discarded. Then the inter-

polation is done from the second to the third point.

e ————

— e —

RPN

i
)
i

If the leading two points or the trailing two points
are not distinct, then the curve interpolation is

Jone by a quadratic fit. Otherwise, a cubic fit is
used. The subroutine solves the interpolation

problem by computing a vector of coefficients in

terms of a parameter TX, which is then varied from -1
to +L in appropriate steps to compute the intermediate
points. Then COUNT is set to 4 so that it will become
5 on the next call to this routine, and the subroutine

is terminated.

See Table 2-05 for a logic diagram of SPLINE.

(4) Local Variables:

(a)

(v)

RUNX(S) - Stores X coordinates of the current set of
points to be plotted with interpolation being performed
between the points whose X coordinates are represented
by the second and third members of this array. The
first and fourth members are used for curve fitting.

At the beginning of each call to SPLINE, the desirad

X coordinates are stored in the second through fifth
members, but they are all moved to the previous spot

in the array before interpoclation begins.

RUNY(3) - Stores Y coordinates of the current set of
points to be plotted with interpolation being performed
between the points whose Y coordinates are represented
by the second and third members of this array. The
first and fourth members are used for curve fitting.
At the beginning of each call to SPLINE, the desired
Y coordinates are stored in the second through fiith
members, but they are all moved to the previous spot

in the array before interpolation begins.

42

(c)

(d)

(e)

(£)

(g)

(h)

(1)

o ey e et s o o e

COUNT ~ Count of the number of points placed in RUNX
and RUNY. Used to control moves and draws. When
COUNT=3, the plotter beam is moved to the starting
point of where the curve is to be plotted. When
COUNT=5, the plot between any pair of points is being
performed, after which COUNT is reset to 4, in

preparation for the next interpolation.

X1 - The X coordinate of the starting point of the
curve segment where interpolation is to be dome. Equal
to RUNX(2).

Yl - The Y coordinate of the starting point of the
curve segment where interpolation is to be dome.
Equal to RUNY(2).

X2 ~ The X coordinate of the ending point of the curve
segment where interpolation is to be done. Equal
to RUNX(3).

Y2 - The Y coordinate of the ending point of the curve
segment where interpolation is to be done. ZEqual
to RUNY(3).

QUADCO(3,2) - Stores coefficients needed for quadratic
interpolation. Each member QUADCO (*,1) stores
coefficients for X while each member QUADCO (*,2

stores coefficients for Y.

CUBCOF(4,2) - Stores coefficients needed for
cubic interpolation. Each member CUBCOF (*,1)
stores the coefficients for X while each member

CUBCOF (*,2) stores the coefficients for Y.

m

TX - A number between -1 and 1 used as a parameter
in calculating the X and Y coordinates of any point
where the small line segments that approximate a
curve are drawn during interpoclation.

T2MAT(3,3) ~ Parameter matrix of coefficients

used in conjunction with TX in quadratic
interpolation.

T3MAT(3,3) ~ Parameter matrix of coefficients

used in conjunction with TX in quadratic
interpolation.

T4MAT (4,4) - Parameter matrix of coefficients

used in conjunction with TX in cubic

interpolation.

XCOEFF and YCOEFF -~ Coefficients in for X and ¥
respectively, used in interpolating.

XCORD and YCORD - The X and Y coordinates of the
intermediate endpoint where a small line segment is

to be drawn during the interpolation process.

Identification: STNDRD

Function: Plot a string of ASCII characters om the CRT.

)
(k)
1)
(m)
(n)
(0)

STNDRD

(1

2

(3) Pro

cessing:
Call SYMHGT to establish the orientation of the
characters in the wvariables CSTHET and SNTHET.

If any invalid values are detected, the program

returns to the caller without taking any other

action.

Otherwise, it draws each character in the string.
The number of characters to be drawn is in COMMON

in LVALUE. The technique for drawing the characters
is identical to that used for subroutine SPECL (para
2.4.2 1 above) except that the beam is positiomed

at the lower right hand cormer of the & by 8 grid
after each character is drawn, and is therefore

positioned properly to start the next character.

See Table 2~16 for a logic diagram of STNDRD.

Local Variables:

Due to limitations in the number of continuation statements
allowed in FORTRAN, several smaller arrays have heen set
equal to the actual values of the arrays PNTR and ENTRY.
The values are placed in PNTR and ENTRY through equivalence

statements.

(a) PNTR(63) - Contains pointers to the array ENTRY. The
small arrays used to initialize PNTR are described
below:

.

PNTR1(36) - Contains pointers to the array ENTRY

for the first 36 standard characters.

PNTR2(29) - Comtains pointers to the array ENTRY

for the last 29 standard characters.

(b) ENTRY(994) - Gives drawing directions for each
standard character. The small arrays used to initialize
ENTRY are described bhelow:

LOWCH1(52), LOWCH2(536), LOWCH3(52), LOWCH4(60),
LOWCHR(22) - Give drawing directions for all

standard characters whose ASCII representation is

less than cthe representation for zero.

.

NUMO3(80) - Gives drawing directions for the numeric

characters from 0 to 3.

NUM47(68) ~ Gives drawing directions for the numeric

characters from 4 to 7.

NUM89 (54) - Gives drawing directions for the numeric

characters from 8 to 9.

NUMCHR(72) - Gives drawing directions for all
characters whose ASCII representation is greater
than the representation for 9 and less than
representation for the at sign. This array is i 3
called NUMCHR because it continues many of the

numeric comparison operators.

mark and the at sign.

QUESAT(66) - Gives drawing directions for the question F
¥
}
LETAE(82) - Gives drawing directifoms for the alphabetic

characters from A through E. P

LETFJ(70) - Gives drawing directions for the alphabetic

-

characters from F through J.

LETRO(60) - Gives drawing directions for the alphabetic 4

characters Zrom X through O. ’

LETPS(74) - Gives drawing directions for the alphabetic

characters from P through S.

LETTW(52) - Gives drawing directions for the alphabetic

characters from T through W.

LETXZ(36) - Gives drawing directions for the alphabetic

characters f{rom X through Z.

BEYLET(38) - Gives drawing directions for all
characters whose representation is greater than the

letter "2". Mnemonic: Bevond-Latters.

46

(¢) X1 - Equal to the internal representation of the
character to be plotted. Equivalent to KIUP(2) with
K1UP(l) equal to the high order portion of Kl.

Used to calculate PTR, the pointer used to address
the PNIR array.

(d) PTR - The pointer to the array PNTR.

(e) PSTART, PBND, DELTAX, DELTAY, XSTHET, SNTHET are
used in the same way as they are in subroutine SPECL

which is described in para 2.4.2f.

WINDOW

(1)

(4)

Identification: WINDOW

Function: Allow the user to specify the boundaries of
the plot in terms of inches. This simulates the WINDOW
command of the CALCOMP plotter.

Processing:

The program prompts the user for four values, which are

the X,Y coordinates of the lower left and upper right
corners of the rectangular boundaries of the plot. It then
computes the corresponding coordinates in CALCOMP units and
in Tektronix units, and places the resulting values into
the arrays CLCRNR and TKCRNR in COMMON, where they goverm
the next plot. Finally, the signs of PST and SINPSI are
reversed, so that any existing rotation (entered beifore
calling WINDOW) is applied to the area defined by WINDOW
the same as it is on the CALCOMP plotter. See Table 2-17
for logic diagram of WINDOW.

Local Variables:

(a) VALUE(4) - The four values {i.e. two points) of window

data that the user entered. Below is a table of values

‘1
i

and their equivalents:

VALUE(L) = X1

VALUE(2) = Y1 !:
: VALUE(3) = X2 ‘
j VALUE(4) = Y2 i

(b) FLAG - A logical variable that is turned on each time
the user enters a valid window value. Turned off before
each prompt. b

(¢) BLXREP, BLKREP1l, BLKREP2 - Logical variables that are
turned on when user enters blanks as one of che four
window values. Used the same way as the variables with

the same name in program MAIN described in Sectiom 2.4.1.

». GETFIL
(1) 1Identification: GETFIL

(2) Function: Allows the user on the PDP-11,/7C to specify the
file he wisties to plot. dlso, closes any uvreviously opened
plot file. Determines whether the file is accessed from dis
Jr tape by setting INFILE. ‘

(3) Processing:

GETFIL has one argument, IFUN. When IFUN equals O, the
routine closes any previouslv opened plot file and returms

to FETCH. Otherwise, the program prompts the user Ior a

logical unit number. If the file number is only one digit,
the program inserts a leading zero. The program then builds
a data set name of the form FILEnn.DAT, where nn is the
logical unit number, and opens the file of that name. I
any error is encountered, the program displays an arror
message, changes the value of INFILE to the one not vet
used, thus testing the other device type, and tries the COPEN
again. If the file cannot Se opened on either tape or disk,

the routine prompts for a new file number, until it opens a

file successfullv. INFILE is 30 for tape, and 25 for disk

files.

2.4.3 Service Subroutines. There are three service subroutines used

for mathematical computations. Two were written for this program, and

one was selected from the IBM Scientific Subroutine Package.

a.

c.

LLSQ - This routine is from the IBM Scientific Subroutine
Package. Its intended use is to solve the linear least
squares problem for matrix arguments. In this program, it
is used to derive the transition matrix CLTTX when those
corresponding sets of coordinates, in CALCOMP units and
TEKTRONIX units, have been established. See Appendix A
for a mathematical description of the transformations.

See Reference 1.2d for a complete description of LLSQ.

SYMHGT
(1) Identification: SYMHGT

(2) Functions: SYMHGT uses its input paramecers (the current
values of EVALUE, FVALUE and NVALUE) to compute three
output parameters used in plotting characters or character
strings. The output parameters are the symbol height,
and two rotation parameters {cosine theta and siné theta).
The svmbol height is an integer, rounded up from the
calculated height/8. This insures that the values
returned will work wizh the two character plotting
routines SPECL and STNDRD which draw characters on a grid

of 8 x 8 points. See Figure 2-03.

TRANS
(1) Identificatiom: TRANS

(2) Function: TRANS inverts the linear transformation used
in SCOPE. That is, given a pair of points (U,V) in
coordinate system B, and the 3 X 2 transition matrix

which carries a point (X,Y) from coordinate system A

49

e NPT

LT e
By

into coordinate system B, it replaces (U,V) with the
preimage point (X,Y). See Appendix A for a description

of the transformation used.

2.4.4 String Handling Routines. The following 3 subroutines are used to

perform character string manipulation for the CALCOMP Preview System.
On the NASC system, these routines are written in IBM assembler, while

on the PDP-1l, they are written in PDP Fortran 4+.

INDEX VERIFY
SBSTRI TRNSLT
SBSTRO GSTRE
CONCAT GSTRL

Below is a description of each routine, its calling sequence, and the
abend code it returns when invalid parameters are encountered. On the
NASC, the abend code is the completion code for an ABEND, while on the
PDP-11, the result is a STOP YN, with N being the abend code. INDEX,
VERIFY, and GSTRE are functions which return an Integer *4 value. GSTRL

is a function which returns a real value. The other routines are subroutines.

INDEX - An integer function which searches a string for a spetified bit
or character configuration. I1f the configuration is found, the
starting posirtion of the left most configuration within the string

is returned. Otherwise, the value zero is returned.
Example calling sequence: I = INDEX (STR1, L1, STR2, L2)

STR1 is the string to be searched; L1 is the length of the porticn
of STR1 that is to be searched; STR2 is the character configura-
tion desired, and L2 is the length of STR2 being dealt with in

the search. The abend code is 1003.

SBSTRI - A subroutine which replaces a certain number of characters

in one string with the same number of characters Zrom another

string.

Example calling sequence: CALL SBSTRI (STR1, IP1, L1, STRI)

30

'
'
}
}

STR1 is the receiving string, IPl is the position in STR1 where
character replacement is to begin, L1 is the number of
characters to be replaced, and STR2 is the replacement string.

No blank padding is done. The abend code is 1002.

SBSTRO - A subroutine which replaces the beginning characters of one

string with the same number of characters from another string.
I the number of characters to be replaced is not an even
aultiple of 4, the remaining dvtes, up to an even multiple of

/,

4, are replaced with blanks.
Example calling sequence: CALL SBSTRO (STR1l, IP1, L1, STR2)

STR1 is the replacement string; IP1 is the starting position of
STR1 being used in replacement; L1 is the number of characters
being replaced, and STR2 is the receiving string. The abend
code is 1001,

CONCAT - A subroutine which joins together two strings and places the

results into a third string. It pads with blanks, i needed, up

to a multiple of 4 bytes.

.

Example calling sequence: CALL CONCAT (STR1, L1, STR2, L2, STR3)

STR1 is the first string to be joined; L1 is the length of STRI;
STR2Z is the second string to be joined; L2 is the length of

STR2; STR3 is the replacement string. The abend code is 1005.

VERIFY - An integer function which examines two strings to verily that

each character in one string is represented in another string,
returning a value of zero, if that is the case. Otherwise, the
value returned is the position of the first bvte in the first

string that is not represented in the second string.
Example calling sequence: I = VERIFY (STR1, L1, STR2, L)

In this case, VERIFY returns the first character in the first
L1 bytes of STR1 that is not found in the first L2 bvtes of
STR2, or zero, if all bvtes of STRL are also in STR2. The abend

code is 1004.

51

TRNSLT - A subroutine which replaces a certain number of characters

GSTRE

GSTRL

of a certain string with one of two designated tables. One
table results in converting CALCOMP ASCII to the machine
representation of the computer being used; while the other

results in lower case letters to upper case.
Example calling sequence: CALL TRNSLT (STR1, L1, ITAB)

In this case, TRNSLT translates the first L1 bytes of STR1
with the designated table:

If ITAB = 1, translate CALCOMP ASCII to the proper computer
representation. On the NASC, CALCOMP ASCII is converted to
EBCDIC. On the PDP-11l CALCOMP ASCII is converted to

PDP-11 ASCII.

If ITAB = 2, translate lower case letters to upper case.

The abend code is 1006.

- A function which converts a numeric integer character string
into an integer. This implements FORTRAN I format with
length L1.

Example calling sequence: I = GSTRE (STR1l, L1)

In this case, GSTRE returns the first Ll bvtes of STR1 as

an integer. The abend code is 1007.

- A function which converts a numeric fixed character 3tring
into a floating point real value. This implements FORTRAN F
format with length LI1.

Example calling sequence: X = GSTRL (STR1l, L1)

In this case, GSTRL returns the first L1 bvtes of STRl as a

floating point value. The abend code is 1008.

52

2.4.5 Graphic Subroutines.

a. Identification: The following 10 subroutines from the

Tektronix Corporation PLOT 10 control svstem are used in

SCOPE.
ANMODE AQUTST DASHA DRAWA DWINDO -
INITT PNTABS SCURSR TERM TWINDO

b. Functions: These subroutines provide the interface to
the Tektronix graphic terminal. For details, see

Reference 1l.2c.

2.5 Program Logic Descriptions.

The CALCOMP Preview program was designed, and the first NASC version
was written, using structured programming techniques available in the
PL/1l language. The production program described in this manual is
written in FORTRAN IV, conforming to ANSI standards where practicable.
Those necessary functions that could not be performed using ANSI FORTRAN
were implemented in IBM assembly language Zfor the NASC system and in
RSX~11M Fortran 4+ for the PDP-11.

The FORTRAN 1V language does not contain the structured programming
control logic available in block structured languages such as PL/1,
PASCAL, FORTSIM, or FORTRAN 77. This frequently obscures the underlying
program logic in the complexity of FORTRAN GOTOD statements, computed
GOTOs, etc.

The tables which follow contain logical descriptions of the more
complex programs and subroutines in a pseudo-code that supplements
the descriptions in para 2.4. The logic flow is shown bv the control
structures which are described below. Each description provides an

example of how it is usually implemented in FORTRAN IV. A programmer

33

who must change part of the program logic can relate the mnemonic
names to the short FORTRAN variable names and the block structure
to the FORTRAN implementation to locate the parts of the FORTRAN

code that should be changed.

A. JF-THEN-ELSE
In a block structured language, this would be written as:

IF (&) THEN

(code for IF conditiom)
ELSE

(code for NOT IF)
ENDIF

In FORTRAN, this is coded as:
IF (.NOT. a) GO TO 200
(code for condition TRUE)
GO TO 300
200 CONTINUE
(code for condition FALSE)
300 CONTINUE
Note: Code for IF condition is indented under the IF and code

for the NOT IF is indented under the first continue.

3. DO-WEILE
This would be written as
WHILE (4)
(code)
END WHILE
In FORTRAN, this is coded as:
1000 CONTINUE
IF (.NOT.A) GO TO 2000
(code)
GO TO 1000
2000 CONTINUE
Note: Code to be done within a DO WHILE is indented under the IF
statement. The CONTINUE statement in this case is indented

as an END statement normally would be.

54

TR e

100

the

for

10

DO-UNTIL
This would be written as:
UNTIL (A)
(code)
END UNTIL
In FORTRAN, this is coded as:
CONTINUE
(code)
IF (.NOT. &) GO TOQ 100
Note: Code to be dome within a 20 UNTIL is indented under the
continue statement refined to beneath the loop. The IF
statement is indented on the same level as the CONTINUE

to which it refers.

CASE (Otherwise known as SELECT)
This would be written as:
SELECT (VALUE)
When (ALT1)
(code for alternative 1)
When (ALT2)
(code for altermative 2)
When (ALTN)
(code for altermative YN)
Otherwise
{code for default)
END SELECT
In FORTRAN, this is implemented in one of two ways, depending on

type of values involved. It is implemented as a computed GO TO

consecutive numeric values, and as multiple IF statements, otherwise.

Computed GO TO (This example assumes 4 altermatives)
GO0 TO (10,20,30,40), VALUE

(code for default - value not between 1 and &)

GO TO 30

CONTINUE

(code for first altermative)

GO TO 50

55

i, udindi

20 CONTINUE

; (code for second alternative)
GO TO 50 .
30 CONTINUE {

(code for third alternative) |

GO TO 50 {
40 CONTINUE 3
(code for fourth altermative) 1{

50 CONTINUE '
|

Multiple IF-Statements

|
(This example assumes 4 alternatives) F

IF (VALUE.NE.ALT1) GO TO 20
(code for first altermative) !
GO TO 60
20 CONTINUE
IF (VALUE.NE.ALT2) GO TO 30
(code for second altermative)
GO TO 60
30 CONTINUE

IF (VALUE.NE.ALT3) GO TO 40
(code for third altermative)
GO TO 60

40 CONTINUE ‘
IF (VALUE.NE.ALT4) GO TO 30

(code for fourth alternative)
GO TO 60
50 CONTINUE
(code when none of the alternatives are true) ¥
60 CONTINUE '
Note: Code for each alternative is coded under the previous statement.

A CONTINUE statement is placed at the end of the FORTRAN

CASE structure.

>

e

Logic Description - Program MAIN

(Module discussed in Paragraph 2.4.1)
BEGIN MAIN
Set Screen-Cormers, Bed-Corners, Inch-Vertices to default values.
Set angle PHI and its trig function values to CALCOMP values.
CALL DEFALT - (Sets certain parameters to default values)
CALL HELP(1l) -(Types opening message to user)
UNTIL (END)
CALL ASK (1,REPLY) - (Types prompt "COMMAND?'™)
Extract user respomse REPLY
Select (REPLY)
"PLOT" ~ PLOT is turned on
"DUMP" - DUMP is turned on
"END" - END is turned on, terminating the run.
"?" -~ CALL HELPER - (Intermal Subroutine)
"BOX" -~ CALL BOX
"ROTATE" - CALL ROTATE - (Intermal Subroutine)
"SCALE" - CALL SCALE - (Internal Subroutine)
"FAST" - EXACT is turned off
"EXACT" - EXACT is turned on
"JINDOW" - CALL WINDOW ‘
"™NOWINDOW' - BEGIN
Set Screem-Corners, Bed-Cormers, Inch-Vertices to default values
Set angle PHI and its trig function values to CALCOMP values
CALL DEFALT
END
"HELP" - CALL HELPER - (Intermal Subroutine)
"FRAME" ~ FRAME is turned on
"NOFRAME" - FRAME is turmed off
"REORIGIN" - BEGIN
HALT is turned on
REORIGIN (RRIGIN) is turned on
END
"HALT" - HALT is curned on
""™NOHALT" - BEGIN

TABLE 2-0l: Logic Description - Program MAIN
(Page i of 2)

57

e e

{
|

HALT is turned off

REORIGIN (RRIGIN) is turmed off)

END }‘
"FULLSCREEN" - BEGIN }

Set Screen-Cormer, Bed-Corner, Inch~Vertices to fullscreen values

PR

Set angle PHI and its trig function values to Tektronix values
CALL DEFALT
- ;
Otherwise - CALL HELP(17) - (Types '"Invalid response') X
END Select (REPLY) :
WHILE (PLOT or DUMP) j
PLOTTING (PLOTNG) is turmed on
IF NOT (File-Open) THEN
CALL FETCH(l) - Open File
IF (PLOT) TEEN
CALL BLANKR (initializes the plotting process)
ENDIF
ENDIF
WHILE (PLOTNG)
STEP is turned off .
CALL FETCH(0O) -~ (Retrieve Next CALCOMP Sentence)
IF (PLOT) THEN
CALL DRAW (Perform all graphic functions)
ELSE
i Write out CALCOMP Sentence to UNIT 8
ENDIF
ENDWHILE (PLOTNG)
PLOT is turned off
DUMP is turned off
ENDWHILE (PLOT or DUMP)
ENDUNTIL (END)
1 END MAIN

‘ TABLE 2-01: Logic Description - Program MAIN
E (Page 2 of 2)
| 58

Logic Description - Internal Subroutine SCALE o

(Module discussed in Paragraph 2.4.1)

BEGIN SCALE l |
LOCFLG is turned off |
UNTIL (LOCFLG) {
Analyze REPLY (Left over from user’'s input command) ‘
IF REPLY is numeric - THEN '
Set SCLRAT = REPLY
LOCFLG is turned on u
ELSE
: SCLRAT is set to O
f ENDIF
IF SCLRAT <€ 0 THEN
Write "Invalid Reply"
CALL ASK (3, REPLY) - (Prompt User to Enter Scale Factor)
LOCFLG is turned off
ENDIF
ENDUNTIL i
Divide CaL-Cormers and Inch-Corners by SCLRAT .
END SCALE

TABLE 2-02: Lcgic Description ~ Internal Subroutine SCALE

59

Logic Description - Intermal Subroutine ROTATE

(Module discussed in Paragraph 2.4.1)

BEGIN ROTATE
LOCFLG is turmed off
UNTIL (LOCFLG)
Analyze REPLY (Left in from user's command)
IF REPLY is numeric - THEN ‘
Compute PSI = REPLY/57.29578 - (Convert Degrees to Radians) ;
l Set COSPSI = COSINE (PSI) f
Set SINPSI = SINE (PSI) ‘ﬁ
LOCFLG is turmed on
ELSE
Write "Invalid Reply”

CALL ASK (3, REPLY) - (Prompt user to Enter Angle in Degrees)
ENDIF
ENDUNTIL
END ROTATE

TABLE 2-03: Logic Description - Internal Subroutine ROTATE

Logic Description - Subroutine BLANKR

(Module discussed in Paragraph 2.4.2b)
BEGIN BLANKR
Set XTEK = Tek-Cormers (3,1)
Set YTEK = Tek-Cormers (3,2)
Set OLDX, OLDY, PREVX, PREVY = 1
Reorigin~-Indicator (RRGIND) is turned off
Set CAL-To-Tek = Tek~Cormers
DO: K =1 to 3 = (Create Work Matrix for use in transformation in LLSQ)
CAL-Corners (K,l1) = CAL-Cormers (X,1l) + XOFST
CAL-Corners (K,2) = CAL-Cormers (X,2) + YOFST
Work-Matrix (X,1) = (CAL-Cormers (K,1l)*COSPSI) + (CAL-Cormers (K,2)*SINPSI)
Work-Macrix (K,2) = (CAL-Cormers (K,2)*COSPSI) - (CAL-Cormers (K,l1)*SINPSI)
Work-Matrix (K,3) = 1.0
ENDDO
Set XOFST, YOFST = O
CALL LLSQ - (Compute Transition matrix from CALCOMP coordinates to Tektronix)
IF (IER=Q0) THEN ~ (When Return from LLSQ okay)
Set PSIX = PSIL
Set SINPSI = SINPSI
Set COSPSX = COSPSI
IF Default-On (DFLTON) THEN
Tek~Corners = Screen-Cormers
CALL INITT - (Initialize terminal; Baud rate is a paramecer)
CALL TERM - (Takes advantage of features of Tektronix 4014/4015)
CALL TWINDO (Tek-Cormers (1l,1), Tek-Cormers (3,1), Tek-Cormers (1,2),
Tek-Corners (2,2)) - (Use upper and lower boundaries of terminal as parameters)
CALL DWINDO (Tek-Cornmers (l,1), Tek-Corners (3,1), Tek-Corners (1,2
Tek-Corners (2,2))
XMIN, YMIN = $7108864
XMAX, YMAX = -XMIN
Inch-To-Tek = Tek-Corners

Do: K= 1 to 3 - (Create Work Matrix for use in transformation in LLSQ)

TABLE 2-04: Logic Description - Subroutine 3LANKR
(Page 1 of 3)
61

L

Work-Marrix (X,l) = (Inch-~Cormers (X,l)*COSPSI) + (Iach-Cormers (X,2)*SINPSI)
Work-Matrix (K,2) = (Inch-Corners (K,2)*COSPSI) - (Inch-Cormers (X,l)*SINPSI)
Work-Matrtrix (K,3) = 1.0
ENDDO

CALL LLSQ - (Convert Transition matrix from CALCOMP coordinates to Tektronix)

CALL MOVEA (Tek-Cormers (1,1l), Tek-Cormers (1,2)) - Move beam to bottom left

hand cormer
IF (FRAME) THEN - (Draw Frame and Write Out Window Data)
CALL DRAWA (Tek-Cormers (l,l), Tek-Cormers (2,2))
CALL DRAWA (Tek-Cormers (3,1), Tek-Cormers (2,2))
CALL DRAWA (Tek-Corners (3,1), Tek-Cormers (1,2))

CALL DRAWA (Tek~Cormers (1,1), Tek-Corners (1,2))

Write 'Window Data’

CALL TRANS - (Using lower left hand cormer - translate to inches)
Write out values of coordinates for lower left hand corner.

CALL TRANS - (Using upper right hand corner - translate to inches)

—

e

Write out values of coordinates Irom upper right hand cormer
Compute SCALE = Square Root (ABS (Inch-To-Tek (1,1)*Inch~To-Tek (2,2)) -~
(Inch=To-Tek (2,1)*Inch-To-Tek (1,2))))

Write out SCALZ i

L'_' .. SN i

Write "Press Return to Begin Plot” ‘ |

CALL SCURSR (ICHAR, IX, IY) - (activate graphic cursor - holds display ‘
till user enters a character)

CALL INITT (Reinitialize terminal)

CALL TERM (Reset terminal characteristics)

CALL TWINDO (Tek~Cormers (1,1), Tek-Corners {3,1), Tek-Cormers (1,2),

Tek-Corners (2,2)) -~ (Enter upper and lower bounds of terminal)
CALL DWINDO (Tak-Cormers (1,1), Tek-Cormers (3,1), Tek-Corners (1,2),
Tek-Corners (2,2))
(Draw Frame Before Actual Plot)
CALL MOVEA (Tek-Cormers (1,1), Tek-Corners (1,2))
CALL DRAWA (Tek-Cornmers (l,l1), Tek-Corners (2,2))
CALL DRAWA (Tek-Corners (3,1), Tek=-Cormers (2,2))
CALL DRAWA (Tek~Corners (3,1), Tek-Corners (1,2)) 3
CALL DRAWA (Tek-Cormers (1,1), Tek-Corners {(1.2)) :

TABLE 2-04: Logic Description - Subroutine BLANKR
(Page 2 of 3)
62

e

, ENDIF
i ELSE (Path if LLSQ fails - IER NOT EQUAL 0) |
! Write 'Invalid Transformatiom Values' i

CALL FETCH(2) - (Close Plot File)
Plotting (PLOTNG) is turmed off
ENDIF

END BLANKR

TABLE 2-04: Logic Description - Subroutine 3LANKR
(Page 3 of 3)

63

Logic Description - Subroutine BOX
(Module discussed in Paragraph 2.4.2¢)

BEGIN BOX
IF NOT (Reorigin-Indicator) THEN

Set CAL-To-Tek(3,1) = XORG (Reset to X coordinate of original origin)

Set CAL-To-Tek(3,2) = YORG (Resec to Y coordinate of original origin)

Set XOFST, YOFST = 0

ENDIF 'J
Turn off PNT12, PNT13, PNT14, PNT23, PNT24, PNT34 |
Set X(I), Y(I) =0 for I = 1,4
Set POINTS(1l), POINTS(2) =0
UNTIL (POINTS(2)> 0)

CALL SCURSR (IX, IY, ICHAR) (Activate graphic cursor, obtain coordinates

and designator)
Compute ICBAR = ICHAR - 48 (Translate Machine Code to user response)
SELECT (ICHAR)
1,2,3,3 - BEGIN - (When the user has entered a valid first corner)
Set X(ICHAR) = IX (Set X Coordinate)
Set Y(ICHAR) = IY (Set Y Coordinate)
POINTS(1) = ICHAR (Sets first corner)
END

Otherwise

Write Error Message (Invalid designation of cormer)
END SELECT

***Below DO WHILE loop is not performed unless a valid first cormer has been

entered. *¥**
WHILE (POINTS(1l) >0 and POINTS(2) ‘<= N) (Get second corner)
CALL SCURSR (IX, IY, ICHAR)
Set ICHAR = ICHAR ~ 48 - (Translate)
IF ((ICHAR NE POINTS (1) and (ICHAR EQ 1,2,3,4) AND (IX NE X(1) OR
IY NE Y(1)) THEN
Set POINTS(2) = ICHAR
Set X(ICHAR) = IX
Set Y(ICHAR) = IY g
ENDIF k
TABLE 2-05: Logic Description - Subroutine BOX
(Page 1 of 4)

64

ELSE

ENDIF
ENDWHILE (POINTS(1)2

*%**Tf an invalid reply was

ENDUNTIL (POINTS(2)» 0)

Select (POINTS(1l) and POI
Corners = 1,2 - BEGIN
RHO2 = Square Root ((
RHO3 = RHO2 * CSCPHI
RHO4 = RHO2 * COTPHI
THETAZ = ARCTAN ((Y(2
THETA4 = THETA2 - (I
THETA3 = THETA4 + PHI

X(3) = RHO3 * COS(THETA3) + X(1)
Y(3) = RHO4 * SIN(THETA3) + Y(1)
X(4) = RHO4 * COS(THETA4) + X(1)
Y(4) = RHO4 * SIN(THBETA4) + Y(1)

END
Corners = 1,3 - BEGIN

RHQ3 = Square Root ((
RHO2 = RHO3 * SINPHI
RHO4 = RHO3 * COSPHI
THETA3 = ARCTAN ((Y(3
THETA4 = THETA3 - PHI
THETA2 = THETA4 + (T

X(2) = RHO2 * COS(THETA2) + X(1)
Y(2) = RHOZ * SIN(THETA2) + Y(1)

Write Error Message

0 and POINTS(2) € = 0)

received on the ’irst try, the preceding WHILE loop

[

is not executed, and control passes here, which executes the outer loop again.***

NTS(2)) ~(Select Desired Cormners) : q

2 2 A
X(2) - X(1))™ + (X(2) - YN ‘

)-Y(1))/(X(2)-X(1)))
/2)

X=X + (¥(3) - Y1)

)=Y(1))/X(3)-X(1)))

/2)

UV

VimtexI il el e

X(4) = RHO4 * COS(THETA4) + X(1)
Y(4) = RHO4 * SIN(THETA4) + Y(1)

END

TABLE 2-05:

Logic Description - Subroutine 3OX

S

(Page 2 of 4)

A5 !

T e wen o

Corners = 1,4 ~
RHO4 = Square
RHO2 = RHO4 *
RHO3 = RHO4 *

X(3) = RHO3 *

Y(3) = RHO3 *

X(2) = RHO2 *

. Y(2) = RHO2 *

| END

, Corners = 2,3 =
RHO4 = Square
RHO2 = RHO4 *
RHO3 = RHO4 *

Rl ——— e~ TS

BEGIN
Root ((X(5)-X(1Z + (T(&) = TAND)
TANPHI
SECPRI

THETAG = ARCTAN ((Y(4)-Y(1))/(X(4)-X(1)))
THETA3 = THETA + PHI
THETA2 = THETA4 + (7T/2)

COS(THETA3) + ¥(1)
SIN(THETA3) + Y(1)
COS(THETAZ) + X(1)
SIN(THETA2) + Y(1)

BEGIN
Root ((X(3)-x(2)Z + (¥(3) - ¥2HD)
TANPHI
SECPHI

THETA4 = ARCTAN ((Y(3)-Y(2))/(X(3) =~ X(2)))
THETA3 = THETA4 + PHI
THETA2 = THETA4 + (T7/2)

X(1) = X(2) -

Y(1) = Y(2)

X(4) = RHQ4 *

! Y(4) = RHO4 *
END

Corners = 4,2 -

RHO2 = Square

RHO3 = RHOZ2 *

RHO4 = RBO2 *

COS (THETA2) * RHO2
SIN(THETAZ) * RHOZ2
COS (THETA4) + X(1)
SIN(TBETAG) + Y(1)

BEGIN
Root ((X(3)-x(4N % + (1) - TGN
CSCPHI
COTPHI

THETA2 = ARCTAN ((Y(3)-Y(4))/(X(3) = X(4)))
THETA4 = THETA2 - O/2)
THETA3 = THETA4 + PHI

TABLE 2-05 Logic Description - Subroutine BCX

(Page 3 of &)
66

X(1) = X(4) ~ COS(THETA4) * RHO4
X(1) = ¥(4) ~ SIN(THETA) * RHO4
X(2) = RHO2 * COS(THETA2) + X(1)
Y(2) = RHO2 * SIN(THETA2) + Y(1l)
END

END Select

CALL MOVEA (X(1), Y(1)) - (Move to lower left hand corner of Box)
D0: J =1T0 3 - (DO transformations and Draw Sides of Box)
Set Ul = X(J)
Set U2 = Y(JI)
CALL TRANS (Ul, U2, CAL-To-Tek)
Compute:
CAL-Corners (J,1) = (Ul * COSPSX) - (U2 * SINPSX)
CAL-Cormers (J,2) = (Ul * SINPSX) + (U2 * COSPSX)
CALL DRAWA (X(J + 1), Y(J + 1)) - (Draw Side of Box),
ENDDO
CALL DRAWA (X(1), Y(1)) ~ (Draw last side of Box)
CALL SCURSR (ICHAR, IX, IY) - (Dump Buffer by displaying screen cursor)
Set Tek-Cormers = Screen—-Cormers
END BOX

TABLE 2-05: Logic Description - Subroutine BOX
(Page 4 of 4)

67

Logic Description ~ Subroutine CALTEK
(Module discussed in Paragraph 2.4.2d)
BEGIN CALTEK
Set XBFORE = XPRIME
Set YBFORE = YPRIME
Set OLDX = XTEK
Set OLDY = YTEK
(Apply transformations to XCAL and YCAL to result in XPRIME and YPRIME,
the absolute CALCOMP screen coordinata in floating point)
XPRIME = ((XCAL =~ UVALUE) * PVALUE) +
((YCAL - VVALUE) * QVALUE)
YPRIME = ((XCAL - UVALUE) * RVALUE) +
((YCAL -~ VVALUE) * SVALUE)
(Apply locally specified transformations to derive the absolute
Tektronix screen coordinates)
XTER = CAL-To-Tek (1,1) * XPRIME +
CAL-To-Tek (2,1) * YPRIME + CAL-To~Tek (3,1)
YTEK = CAL-To-Tek (1,2) * XPRIME +
CAL-To-Tek (2,2) * YPRIME + CAL-To~Tek (3,2)
Set PREVX = XTEK
Set PREVY = YTEK
STEP is turned on
*%**GVALUE = 352 means plot a string of ASCII characters. GVALUE = 53 means
plot a single 'special character', ***
IF (Pen~Down or GVALUE = 52 or GVALUE = 53) THEN
IF XPRIME > XMAX Set XMAX = XPRIME
IF XPRIME < XMIN Set IMIN = XPRIME
IF YPRIME ? YMAX Set YMAX = YPRIME
IF YPRIME < TMIN Set YMIN = YPRIME
ENDIF
END CALTEK

TABLE 2-06: Logic Description ~ Subroutine CALTEK

68

e ——— -

e A T

b ol iapn

L

Logic Description - Subroutine CIRCLE
(Module discussed in Paragraph 2.4.2e)
BEGIN CIRCLE
(Locate Center of Circle)
XCENTR = XBFORE + IVALUE
YCENTR = YBFORE + JVALUE
%*Determine whether to draw full or partial circle.*
Ql = (IVALUE)? + (JVALUE)>
Q2 = (XCAL - XCENTR)® + (YCAL ~ YCENTR)Z
STANG = ARCTAN (-JVALUE/-IVALUE)
ENDANG = ARCTAN ((YCAL - YCENTR)/XCAL -~ XCENTR))
IF (GVALUE = 2) THEN (Clockwise Circke)
IF (Ql NOT = Q2) THEN (Full Circle)
ENDANG = STANG ~ 2
ELSE
IF ENDANG) STANG THEN - (Partial Circle)
ENDANG = ENDANG - 2
ENDIF
Set SIGN = -1
ELSE (Councerclockwise Circle)
IF (Ql NOT = Q2) THEN (Full Circle)
ENDANG = STANG + 2
ELSE °
IF ENDANG { 5TANG THEN - (Partial Circle)
ENDANG = ZINDANG + 2
ENDIF
Set SIGN = +1
ENDIF
***Compute value of angular increment.**#*
IF (EXACT) THEN (Compute smallest angular change useable to give precise circle)
Compute DET = (CAL-To-Tek(l,l) * CAL~To~Tek(2,2)) -
(CAL-To-Tek(1,2) * CAL-To-Tek(2,1))
Compute DET = DET * ((PVALUE #* SVALUE)} ~ (QVALUE * RVALUE))

TABLE 2-07: Logic Description ~ Subroutine CIRCLE
(Page 1 of 2)
59

e § o

I¥ (DET = Q) THEN
RETURN
ELSE
Compute DELTA = SIGN/(2P* SQUARE ROOT (Ql * ABS (DET)))
ENDIF
ELSE (Approximate circle by polygon)
Compute DELTA = (ENDANG - STANG)/32
ENDIF L
IF (DELTA = 0) DELTA = 3 * SIGN‘i, {
Set Ql = Square Root (Ql)
Set:
Work-Marrix (1,1) = PVALUE
Work-Matrix (1,2) QVALUE
Work-Matrix (1,3) = UVALUE
Work-Matrix (2,1) = RVALUE
Work-Marrix (2,2) = SVALUE
Work-Matrix (2,3) = VVALUE
CALL TRANS (XCENTR, YCENTR, Work~Matrix)
DO: ANGLE = STANG TO ENDANG BY DELTA (Draw the Circlea)
XCAL = XCENTR + COS(ANGLE) * Ql
YCAL = YCENTR + SIN(ANGLE) #* Q1
STEP is turned off 1
CALL CALTEXR
IF (STEP) THEN CALL DRAW (XTEK, YTEX)
ENDDO
END CIRCLE

P

%

TABLE 2-07: Llogic Description - Subroutine CIRCLE 1
(Page 2 of 2)
70

BEGIN DECODE

End-Found is turned off (End of sentence not yet found)

Logic Description -~ Subroutine DECODE
(Module discussed in Paragraph 2.4.2f)

Set PNTR = 1 (PNTR points to first character in sentence)
UNTIL (End-Found)
Set PNTRHD = PNTR (Save position of current letter code)
Increment PNTR

Find next lecter code;

character at or after the PNTR 'th position
IF (NEXT = PNTR) THEN
Set INTVAL = 0 (When letter code is followed by letter code)

ELSE (Extract integer value from sentence)

Set INTVAL = Numeric characters in between the PNTR 'th

and NEXT 'th positioms in sentence

Set PNTR = NEXT (Set to position of next letter code)

ENDIF
Select (Current letter code) - (At PNTRHD 'th position)
"X" - Set XCAL = INTVAL
"Y' - Set YCAL = INTVAL
"E" - Set EVALUE = INTVAL
"F'" - Set FVALUE = INTVAL
"1" - Set IVALUE = INTVAL
"J" - Set JVALUE = INTVAL
"P" - Set PVALUE = INTVAL/10000.
"Q" ~ Set QVALUE = INTVAL/10000.
"R" - Set RVALUE = INTVAL/10000.
"S" - Set SVALUE = INTVAL/10000.
"A" - Set AVALUE = INTVAL
"B" - Set BVALUE = INTVAL
"U" - Set UVALUE = INTVAL
"Y' - Set VVALUE = INTVAL
TABLE 2-08: Logic Description - Subroutine DECODE

(Page 1 of 3)
71

i.e. Set NEXT = to position of first non-numeric

™" - DO ’
Set MVALUE = INTVAL
| STEP is turned on ;
’ ENDDO
"T" = Set TVALUE = INTVAL
"G" - Perform G-Code Processing (Handle character strings - below) N
"D" - BEGIN .
IF (GVALUE NOT = 50) THEN
***GVALUE of 50 means to select the pen number. In this case, the pen number
is contained in the D code. Pen number is not significant to this procgram. 1
Otherwise, for any other value of GVALUE, D1 means pen down, D2 means
pen up.***
Select (INTVAL) k
"1" - turn on PNDOWN 3
"2" - turn off PNDOWN
END Select
END
END Select
IF Current positiomn of sentence is a period turn on End-Found
ENDUNTIL
END DECODE ;

TABLE 2-08: Logic Description - Subroutine DECODE A

(Page 2 of 3)

72

BEGIN G-Code Process
Select (INTVAL) :
52, 55 - BEGIN ‘
Increment PNTR
Set NEXT to position of exclamation point that delimits character string
Set LVALUE = NEXT - PNTR
Set PNTR = NEXT + 1 ii
Set NVALUE = 1.875 ’ !
END 4
33 ~ BEGIN ~ (Distinguish centered characters from regular symbols,
based on value of SPCIL)
Set PNTR = PNIR + 3 i
IF (SPCIL2 15) THEN (Centered symbols)
NVALUE = 1
ELSE
NVALUE = 1.875 b
ENDIF
ENDDO ' 1
5 - BEGIN (Set existing '5' code back to zero, so that code interpreting i

sentences know whether it is at beginning or end of spline
interpolatcion task.)
IF GVALUE = 3
Set INTVAL = 0
IND
END Select
Set GVALUE = INTVAL (Done for all G-codes)
END G-Code Process

TABLE 2-08: Logic Description ~ Subroutine DECODE
(Page 3 of 3)

Logic Description - Subroutine DEFALT

(Module discussed in Paragraph 2.4.2g)

PSR

BEGIN DEFALT

Default-On is turned on

Set AVALUE, BVALUE = 0.5

CALL OPMSG(0) - (Set number of lines on terminal to 720)
Set GVALUE = Q i
Set SINPSI, PSI, QVALUE, RVALUE, UVALUE, VVALUE = 0 ‘
Set PVALUE, SVALUE, COSPSI = 1

Set Cal-Cormers = Bed-Cormers

Set Tek-Corners = Screen-Corners
Set Inch-Cormers = Inch-Vertices
END DEFALT

=

TABLE 2-09: Logic Description - Subroutine DEFALT

74

Logic Description -~ Subroutine DRAW

(Module discussed in Paragraph 2.4.2h)

BEGIN DRAW
CALL DECODE - (Interpret Next CALCOMP Sentence)
CALL CALTEK - (Apply all translations and rotatioms to coordinates;
Compute new values of XTEK and YTEK)
Select (MVALUE)
1 - BEGIN (Temporary halt)
Set MVALUE = Q
IF (HALT) THEN
Write out blank line
CALL SCURSR - (Pause for Instructions)
CALL MOVEA (XTEK, YTEK) = (Return to Position)
Select (Character Entered)
'"P' - PLOTTING is turned off
'.'" - CALL WRAPUP
OTEERWISE NO ACTION TAKEN
END Select
ENDIF
END
2 - BEGIN (Final halt)
Set MVALUE = 0
CALL WRAPUP
END

TABLE 2-10: Logic Description - Subroutine DRAW

(Page 1 of 3)

73

-

et

T

OTHERWISE (Path for normal plotting actions)
SELECT (GVALUE)
1 - BEGIN (Draw solid line or move)
IF (STEP) THEN
IF (Pen-Down) THEN CALL DRAWA (XTEX, YTEK)
ELSE CALL MOVEA (XTEK, YTEK)
END
END
4 -~ BEGIN (Draw dashed line or move)
IF (STEP) THEN
IF (Pen-Down) THEN CALL DASHA (XTEK, YTEK, 78)
ELSE CALL MOVEA (XTEK, YTEK)
END
END
2,3 - CALL CIRCLE - (Draw Circles)
5 - CALL SPLINE (1) - (Begin Spline Interpolatiom)
53 - CALL SPECL ~ (draw Special Characters)
52 - CALL STNDRAD -~ (draw Standard Characters)
55 - CALL OPMSG(l) - (Write Operator Messages)
0 - (Terminate Spline Interpolation)
IF (CURVE) CALL SPLINE (Q)
END
END SELECT
END (Otherwise path)
END Select

TABLE 2-10: Logic Description - Subroutine DRAW

(page 2 of 3)

76

ROy TV

%*GVALUE = 25 means reorigin to current pen location.
IF (GVALUE = 25) THEN (Perform reorigin of coordinates) P
IF (Reorigin~Indicator not yet turned on) THEN
Reorigin-Indicator is turned on \ i
Set XOFST = XBFORE (To tramslate plot to correct position) :
Set YOFST = YBFORE |
Set X-Origin = CLTTK(3,1) - (Save old origin) ’
Set Y-QOrigin = CLTTK(3,2)
ENDIF
IF (RRIGIN) THEN - (Save Screem Cursor as origin of plot)
CALL SCURSR (IX, IY, ICHAR)
Set CAL-To-Tek(3,1) = IX
Set CAL-To-~Tek(3,2) = IY
ELSE -~ (Reset origin to previous origin)
Set CAL-To~Tek(3,1) = OLDX
Set CAL-To-Tek(3,2) = OLDY
ENDIF '
Set GVALUE, XCAL, YCAL = O
ENDIF]
ENDDRAW |

e

e = oo .

TABLZ 2-10: Logic Description - Subroutine DRAW
(Page 3 of 3)
77

Logic Description - Internal Subroutine WRAPUP
(Module discussed in Paragraph 2.4.2h)

BEGIN WRAPUP
CALL FETCH(2) - (Close Plot File)

CALL DEFAL
.CALL SCURS

T - (Reset default values)

R - (Hold plot until user finishes looking at it)

Plotting is turned off.

(Prepare £
Compute:
XRATIO =
YRATIQ =
IF (XRATIO
COMPUTE
ZLSE
CMPLUT

NDI

H

)
]

(8]
Y]

jer _over
5et iprer
Jet Licrer
Jet . ower
Set uipper
3et ipcer
sompute In
wrice "Tin

IND WRAPUP

or optimization by computing XRATIO and YRATIO)

(XMAX - XMIN)/Bed~Cormers (3,1))
(YMAX - YMIN)/243840

D YRATIO) THEN

YMAX = YMIN + (243840 * XRATIO)

MAX = MIN + (3ed-Cormers(3,1) * YRAT.O)

Laft hand corner of CAL-Ccorners to XMIN and YMIN

.eft hand corner of CAL-Cormers to XMIN and YMAX

right 2and zormer of CAL-Corners to XMAX and YMAX

-2f: hand corner 3f Tek-Cormers to 53 and Screen-Cormers + 4
.2f% nand zorner >f Tek-Cormers to 5 and 3117

cwght ~and tormer in Tek-Cormers to 4090 and 3117
ch=<srners = CaL-Cornmers, 5080

ai dal:z"

TABLE 2-11: Logic Description - Subroutine WRAPUP

78

i ol an

Logic Description - Subroutine FETCH

(Module discussed in Paragraph 2.4.21)

BEGIN FETCH (IFUNCT) (May be 0,1,2)
Select (IFUNCT)
0 - Extract next CALCOMP sentence
1 - Prepare for first input record
2 - Terminate file processing
Otherwise - STOP 1040 (Error Condition)
END Select
RETURN
END FETCH

BEGIN EXTRACT (next CALCOMP sentence; when IFUNCT .EQ. 0)
Set Special~length to O
Set Build=-start pointer to 1
Set truncated, sentence-completed, and in-string to .FALSE.
UNTIL (Sentence~completed or Truncated)
WRILE (Record-Needed)
(This WHILE group controls the input of the physical records. The
CALCOMP sentences are variable Iength, and may be spanned over
physical records.))
Read File INFILE (at end of file, terminate file processiag) into
Record-IN
Set Translated-~record to Record-in
Call TRNSLT (TRNRCD, length of TRNRCD, 1)
(Translate special CALCOMP ASCII characters to EBCDIC (NASC AS/S)
or ASCII (PDP-~11)
IF ("SYNC-Code" character string is in proper location, verifying
that this is a correct CALCOMP record) THEN
Set Record-needed to .FALSE.
Set Scan-start-pointer to 1
ENDIF
ENDWHILE (Record-needed)

TABLE 2-12: Logic Description - Subroutine FETCH
(Page 1 of 4)

79

[

————— -
ERV PN

Attt

o3

IF (In-String) THEN
Set J to (remaining length of data portion of translated record,
in bytes)

Set Work-record to remaining data i translated record.

e

Set TERMINATOR to position of the delemiter following the quocted

character string.

Place the untranslated data corresponding to the quoted character
string into the array Special-Text, and note the length of the)
string.) !

Set In-string to .FALSE. '

Adjust Build-Start, Scan-Start, and Special length.

IF (Scan-start is beyond the end of the record) THEN
Set Record-needed to .TRUE.
ELSE
IF (N;xt character to be scanned is the end-of-data marker ($))
Set Record-needed to .TRUE.
ENDIF
ELSE (In-String is .FALSE.)
(This is the path taken at the beginning of a sentence, or when a

sentence is continued over two physical records.)

Set J to (remaining length of data portion of translated record,
in bytes.)

Extract last J bytes of tramnslated record into Work-record. '

(Locate the delimiter that governs the action to be taken: It is the
first of these three characters to occur in the work-record:

'.' marks the end of a sentence.

'!'" marks the beginning and end of a string of characters.
'$' marks the end of the data portion of the record.
Neither '.' nor '$' is significant when enclosed within paired
exclamation marks.
The only way the exclamation mark character may be transmitted

is in a string of length 1, as '!!!'.)

TABLE 2-12: Logic Description - Subroutine FETCH

(Page 2 of 4) 1
80

Select
WHEN (there is no break ('S$')) STOP 1041
(This is a defective CALCOMP record)
WHEN ('!' occurs first)
BEGIN (Open a character string)
IF (character string is of the form '! X !', where X is the value)
THEN
Place untranslated byte corresponding to X into low-order
byte of SPCIL. (How this is done differs between NASC
and PDP; for NASC, divide by 16777216 to shift right -
PDP, subtract value of high-order blanks.)
Adjust length of sentence to be extracted.
ELSE
Set In-string to .TRUE.
Adjust length of sentence to be extracted.
ENDIF
END (Open a character string)
WHEN ('!' occurs first)
BEGIN (Complete the sentence)
Set Sentence-completed to .TRUE, .
Adjust length to be extracted.
IF (Next character to be scanned is 'S$S') THEN
Set Record-needed to .TRUE.
(Next request for a sentence will cause a physical record to be
brought in)
ENDIF
END (Complete the sentence)
WHEN ('S' occurs first)
BEGIN (Extract partial sentence)
Adjust length to be extracted.
Set Record-needed = .TRUE.
END (Extract Partial sentence)
END Select

TABLE 2-12: Logic Description - Subroutine FETCH
(Page 3 of 4)

31

IF (Length of completed sentence would exceed length of SMNTNCE) THEN
Set Truncated = .TRUE,
f Adjust length to maximum possible of additional bytes.
ENDIF
IF (Length to be extracted .GT. 0) THEN
EXTRACT appropriate number of bytes into Work-sentence s
Adjust build-start ‘1

Adjust scan-start X

ENDIF '
IF (Truncated or sentence-completed) THEN

Compute length of sentence (LENSNT)

Place first (LENSNT) bytes of work sentence into SNINCE

IF (Truncated)

Insert a period ('.') into last byte of SNTNCE.

ENDIF

(At this point, if Truncated or sentence-completed, then exit from

the program. ff not, then control returns to the top of the locp to
complete the sentence.)
ENDUNTIL (Sentence~-completed or truncated)

END EXTRACT)

BEGIN PREPARE (for first input record ~ IFUNC .EQ. 1)
Set Record-needed to .TRUE.

g Set File-open to .TRUE.

(For PDP-1l version orly:

‘ Call GETFIL to construct file name and open the input file.)
END PREPARE

BEGIN TERMINATE (file processing)

REWIND INFILE

Set FILOPN = .FALSE.

(For PDP-1l version only: CALL GETFIL to close file.)
END TERMINATE i

TABLE 2-12: Logic Description - Subroutine FETCH
(Page &4 of 4)
82

Logic Description - Subroutine OPMSG
(Module discussed in Paragraph 2.4%.2k)

BEGIN OPMSG
IF (FUNCT = 0) THEN
Set LINE = 720 - (Reset initial conditioms)
ELSE -~ (Put the message on the terminal and get results)

Select (LVALUE) (Adjust character size according to length of message)

LVALUEZ O Return

LVALUE < 70 BEGIN
Set SIZE =1
Set LINES = 1
Set POINTS = 68
END

LVALUE< 77 BEGIN
Set SIZE = 2
Set LINES = 1
Set POINTIS = 83

END
LVALUE< 117 BEGIN
Set SIZE = 3

Set LINES = 1
Set POINTS = 53

END
LVALUE €129 BEGIN
Set SIZE = 4

Set LINES = 1
Set POINTS = 53
Otherwise BEGIN
Set SIZE = 4
Compute LINES + (Length (special text) +4)/113 + 1
Set POINTS = 33
END
END Select

TABLE 2-13: Logic Description - Subroutine OPMSG
(Page 1 of 2)
83

***QPMSG attempts to keep all operator messages in the reserved space below
the graphics area on the CRT. If that space is filled up, or if the program
is in fullscreen mode, it writes operator messages from the top of the CRT

down, *#*%*

IF (LINE £POINTS * LINES) THEN
Set LINE = 3119 - POINTS
ELSE
Set LINE = LINE - POINTS
ENDIF
CALL TWINDO (0,4095, 0, 3120) - (For Entire Tektromix Screen)
CALL DWINDO (0,4095, 0, 3120)
CALL CHRSIZ (SIZE)
Translate operator message f{rom machine code to text to be displayed;
Place 3 asterisks in front of message.
CALL MOVEA (0, LINE) - (Move below plot)
CALL AOUTST (LVALUE + 4, Message) - (Display operator message)
LINE = LINE - POINTS * (LINES -1)
CALL SCURSR (ICHAR, IX, IY) (Display graphic cursor)
IF (Reorigin) THEN (Set origin to coordinates of cursor)
CaL~To=-Tek (3,1) = IX
CAL~-To-Tek (3,2) = IY
ENDIF
CALL MOVEA (XTEK, YTEK)
CALL TWINDO - (For Tektronix Corners)
CALL DWINDO - (For Tektronix Corners)
ENDIF
END OPMSG

TABLE 2~13: Logic Description - Subroutine OPMSG
(Page 2 of 2)

84

[T PP

.,._._

——

Logic Descriptiom -~ Subroutine SPECL

[PV g RPN

(Module discussed in Paragraph 2.5.21)

BEGIN SPECL “
CALL SYMHGT - (Establish orientation of special character) ;E
IF any values out of range, THEN L
RETURN {
ELSE ' |
DO: J=POINT (Special Character) TO POINT (Next Character) -1 BY 2 \
MOVE is turned off !
Select (Entry(J)) ﬁ
(ENTRY(J) € -100) BEGIN ‘
MOVE is turmed ou j
Compute DELTAX = (ENTRY(J) +100) * HEIGHT

END
(ENTRY(J) 2 100) BEGIN
MOVE is turmed on
Compute DELTAX = (ENTRY(J) -100) * HEIGHT
END
Otherwise BEGIN
MOVE is turned on
Compute DELTAX = ENTRY(J) * HEIGHT
END
END Select
XCAL = XCAL + (DELTAX * CSTHET) - (DELTAY * SNTHET)
YCAL = YCAL + (DELTAY * SNTHET) + (DELTAY * CSTHET)
CALL CALTER ~ (Calculate XTEK and YTEK from new values of YCAL and YCAL)
IF MOVE THEN
CALL MOVEA (XTEX, YTEK)
ELSE
CALL DRAWA (XTEK, YTEK)
ENDIF
ENDDO
ENDIF
END SPECL

TABLE 2-14: Logic Description ~ Subroutine SPECL

85

Logic Description - Subroutine SPLINE

(Module discussed in Paragraph 2.4.2m)

BEGIN SPLINE

IF (FUNCT = 0) - THEN - (End of spline interpolation)
CURVE is turmed off
Set RUNX, RUNY = 0
Set COUNT = 0
ELSE
Increment COUNT
CURVE is turned on
Set RUNX(COUNT), RUNY(COUNT) to XTEK, YTEK
(coordinates of current point)
IF (COUNT = 3) THEN
CALL MOVEA (XTEK, YTEK) ~ (Positions the plotter beam at the
starting poinc for the curve to be plotted)
ENDIF
IF (COUNT = 5) THEN
Set each RUNX(J) and RUNY(J) to RUNX(J) and RUNY(J-1),
skipping over previously used phantom point
IF (EXACT) THEN - (Perform interpolation)
Set X1 = RUNX(2)
Set Y1 = RUNY(2)
Set X2 = RUNX(3)
Set Y2 = RUNY(3)
Compute DELTA = 2/Maximum of (X2-X1) and (¥2-Y1)
Select:
WHEN (First two members of RUNX, RUNY are eugqal) - BEGIN
Set gquadratic coefficients to last three members of RUNX and RUNY
QUADRATIC is turmed on
CALL LLSQ using parameter matrix T2MAT and Quadratic Coefficients
END
WHEN (Third and fourth members of RUNX, RUNY are equal) - BEGIN
Set quadratic coefficients to first three members of RUNX and RUNY
QUADRATIC is turmed on
CALL LLSQ using parameter matrix T3MAT and Quadratic Coefficients
END
TABLE 2-15: Logic Description - Subroutine SPLINE
(Page 1 of 2)
86

Otherwise - BEGIN - (Cubic interpolationm)
Set cubic coefficients to first four members of RUNX and RUNY
CALL LLSQ using parameter matrix T4MAT and cubic coefficients
Set XCOEFF and YCOEFF to current values of Cubic Coefficients
DO: TX from -1 to 1 by DELTA - (Plot curve)
Compute XCORD and YCORD to find the end point of the small
line segment used to approximate curve
CALL DRAWA (XCORD, YCORD)
ENDDO
END
END Select
IF (Quadratic) -~ (Quadratic Interpolation) THEN
Set first three members of XCOEFF and YCOEFF to current values
of quadratic coefficients
DO: TX from -1 to 1 by DELTA - (Plot curve)
Compute XCORD and YCORD using TX, XCOEFF, and YCOEFF to find
the end point of the small line segment used to approximate
curve
CALL DRAW (XCORD, YCORD)
ENDDO .
ENDIF
ENDIF
ENDIF
ELSE - (Approximate curve between two points with line segment)
CALL DRAW (RUNX(3), RUNY(3))
ENDIF
COUNT = 4
ENDIF
ENDIF
END SPLINE

TABLE 2-15: Logic Description ~ Subroutine SPLINE
(Page 2 of 2)
87

Logic Description - Subroutine STNDRD

3EGIN STNDRD (Module discussed in Paragraph 2.4.2n)

CALL SYMHGT - (Calculates orientation of character)

IF any parameters are invalid THEN

END STNDRD

RETURN
ELSE
DO: I = 1 to LVALUE - (Do until last character drawn)
Kl = Intermal represeantation of character, converted to actual
number used as pointer
IF (X1 is between 0 and 45) THEN
DO J = PNTR (K1) to PNTR (XK1 +1) -1 BY 2:
Select (ENTRY(J))
(ENTRY (J)< ~100) BEGIN
MOVE is turned on
Compute DELTAX = (ENTRY(J) +100) * HEIGHT
END
(ENTRY(J) 2 100) BEGIN
MOVE is turned on
Compute DELTAX = (ENTRY(J) -100) * HEIGHT
END
Otherwise BEGIN
MOVE is turned off
Compute DELTAX = ENTRY(J) * HEIGHT
END
END Select
XCAL = XCAL + (DELTAX * CSTHET) -
(DELTAY * SNTHET)
YCAL = YCAL + (DELTAX * SNTHET) +
(DELTAY * CSTHET)
CALL CALTEK - (Comnvert to Tektronix coordinates)
IF (MOVE) THEN CALL MOVEA (XTEK, YTEK)
ELSE CALL DRAWA (XTEK, YTEK)
ENDIF
ENDDO
ENDDO
ENDIF

TABLE 2-16: Logic Description - Subroutine STNDRD

88

— e

=L

Logic Description - Subroutine WINDOW

(Module discussed in Paragraph 2.4.20)

BEGIN WINDOW
Default-On is turned om
DO: J=4,7 - (Since number 4-7 in ASK contain window prompts)
FLAG is turmed off
UNTIL (FLAG) - (Valid value entered) .
CALL ASK (J, REPLY) - (Prompt for window value)
IF REPLY is numeric THEN
VALUE (J-3) = REPLY
FLAG is turmed on
ELSE
Write error message
ENDIF
ENDUNTIL
ENDDO
Set lower left hand cormer in CAL-Cormers = X1, Y1
Set upper laft hand cormer in CAL-Cormers = X1, Y2
Set upper right hand corner in CAL-Cormers = X2, Y2
Set Inch-Cormers = CAL-Cormers
IF (X1 = X2) RETURN
RATIO = Absolute value of (¥2-Y1l)/(X2-X1)
IF (RATIO=0) RETURN
IF (RATIO <€(Bed-Cormers (3,2)/Bed-Corners (3,1))) THEN
Set Tek-Corners (2,2), Tek-Cormers (3,2) = Screen-Corners (2,2)
Compute Tek-Corners (3,1) = (Screen-Cormers (2,2) - Screem-Cormers (1,2)/RATIO
ELSE
Set Tek-Corners (3,1) = Screen-~Cornmers (3,1)
Compute Tek~Corners (2,2) and Tek-~Cormers (3,2) =
Screen-Corners (1,2) + (RATIO * Screen-Corners (3,1))

ENDIF

TABLE 2-17: Logic Description - Subroutine WINDOW
(Page 1 of 2)
89

i
:
c
|
t

TSI .

PO IR T

Set Tek-Corners (1,l), Tek-~Cormers (2,1) = 0

Set Tek-Cormers (1,2) = Screen-Corners (1,2)
Set PSI = -PSI

Set SINPSI = -SINPSI

END WINDOW

TABLE 2-17: Logic Description - Subroutine WINDOW
(Page 2 of 2)

90

AD=A102 493 PRC DATA SERVICES CO RESTON VA
CALCOMP PREVIEW SYSTEM. PROGRAM MAINTENANCE MANUAL.(U)

UNCLASSIFIED

A

PR 81
NCA/NF=A1/n024

F/6 972

DCA100=77-C=0037
¥

SECTION 3. ENVIRONMENT

3.1 Equipment Enviroument. On the NASC AS/5-3, the CALCOMP Preview

; System requires the following to run: a CPU with 192K of storage,

a TEKTRONIX 4014~1 terminal or equivalent for input and output, and a

CALCOMP file on disk., CALCOMP files onm tape can be copied to disk E
through use of the utility IEBGENER. See Reference l.2e for details. {

A user merely wishing a dump of the file can run the job in batch and

can use the line printer for output.

On the PDP-11/70, the CALCOMP Preview System needs the following to run:
a CPU, a TEKTRONIX 4014-1 terminal for input and output, and a CALCOMP

file on either tape or disk.

3.2 Support Software. On the NASC AS/5-3, the programs were compiled

using the FORTRAN H Extended Compiler - Optimization Level 1. The
string handling routines were developed using IBM 360 ALC. On the
PDP-11/7C, the programs were compiled using FORTRAN 4 PLUS V03.0.

91

SECTION 4. PROGRAM MAINTENANCE PROCEDURES

4.1 Retrieval Procedures. The source code of the program described in

Sections 2.4.1 - 2.4.4 is stored in R831.LIBRARY under the member name

CLTOTK. It can be retrieved through the LBGET command. For example:
LBGET CLTOTK DSSOURCE('R831.LIBRARY') CNTL

The load module is stored in SYS9.DCAFORT.LINKLIB under the number name
TEKTRONX. During maintenance and modification, the source code and load
module should be left unchanged. Instead, changes should be made to
copies of the subroutines. If extensive changes are to be made, the
recommendation is to divide the program source into separate modules,
recompile each module with the option of saving the object code, and link
edit. See Figure 4-01 for sample JCL for assembling a string handling
routine. See Figure 4-02 for sample JCL for compilation and linkage edit.

The PDP~1l version of the CALCOMP Preview program can be retrieved in omne
of two ways. One way, the user LOGIN's to the PDP-1l and copies the program
from UIC ESO,SSJ to his own UIC. He types in:

copry {50,55]CLTOTK.FIN CLTOTK.FTN .

The user now has a copy of CLTOTK.FTN under his UIC.

Alternatively, the user can do the following. The user obtains a tape

from the room containing the PDP-11/70 and gives it to the operators of the
NASC who give out a serial number for use on the NASC. Then the user logs on
to the NASC, performs a LBGET of CLTKPDP from R831.LIBRARY, places CLTKPDP

on the tape through the ITP command, tramnsports the tape back to the PDP
room, logs in to the PDP-11/70, and performs a TPI. Below follows the
sequence of events. In this example, the user retrieves tape #90017 from

the PDP-1l room and the NASC operators tell him to use U90344 as the

serial number.

o ————

———————

1
1
i
1

//7%9Q33ASM JCB8 (1051601 A,R3329S099+3004s1sN)TAMBEREINC,
77 HCTIFY=MGQ33
/7%
/7% THIS 1S MOQ3JeCNTL(ASM)
/7%
/®
;/l THIS JCL WILL ASSEMBLE » STURCE ARCGFAM ANC PLACE TrRE CRJYEZT
/7% MCOULE IN A PCS FIR LATER US3E.
/7%
//ASSEMBLE S xXEC A\ SMFC, .
/77 RARM='XR EF(FULL)+ NCDECK» CBUECT !
/7/73YSGQ OV DSN=M9C33.SCCPEoCEJ(SBSTFS
C332, 3

H
/7/7SYSIN D20 DISP=SHR »OSN=MS SCOPEe SBESTRCe 2SN

[,

FIGURE 4~01:

Sample JCL for Assembling String Handling Routine

93

T

e

T

//MS333CP1 JT3 (10920000,PRI,120,22,200) « TAMREFFING,
7’77 NOTIFV:MQOBZo“SGC'ASS Q
/7/CCMP EXEC FTRTXCL,

4 DAQ“.FUFT"X:PFONCLISTOQDT(1)04A +LINECIUNT(75) 1,

/77 3*RM-LK~5='X"=FoLzT-LIST'VrF‘.FCQT'"“'I°7K

//FCRT oSYSLIN CD DSN=UCO3Je3CIlPSLBI(MAINI,,DTIS2=CLD

//FC= ToSYbIN DD DSN=MEC334S 0B eM: INGF ET ,DTS325HT
//LKZINa3YSLI CD CSSh=45Q053,30CPLoelBJ(VIN) DTISE=SHF

//LKZO e SYSLT ? CD SSN=SYS1 oF I TLIZWODISF=SHF

/77 D DS!=SYS4e TELKTF IMX 421 EP=35HR

//ULKEDSSYSLATD DD NSHN=SYS e dDCAFI I ToLINKLIB(SCIPE) 4DISP=2SHR,

/7 UNIT=333C
//LKEDeL I8 DO OSN=MCO32aSCIPE 9L 3JsDi SP=SHR

//\ KZCe SYSIN DD ¥
I*ZLJUCE LIS 23K)
ITNCLJDE LIB(RLAMKT)
TNCLUDE LIB(3TX)
INCLUDE LIB(CIRCLE)
I~MCLUDE LIBICALTEK)
INCLULE LI3(DECTTE
INZLUDE LIS(DEFALT)
INCLUDE LIZ(D2raw)
INCLUCE LIS(FETTH)
THCLUDE LIp(HsSL?)
ITNCLUDZ LI 2(LLsSa)
IHCLUDE LI8(I9PUSG)
TNCLUWE LIZ(S=ECL)
INCLUDE LI 3SALIME)
INCLUDE LISQ(SYMHCT)
INCLUWE LIZ(STNDTD)
INCLJUDE LI3(TAaNvS)
CNCLUDE LI2(wTNDCwW)
ICLUDE LIB(SGSTFFE)
THCLUCE LIS(GSTRL)
INCLWE LIS(TTNSLT)
ICLUDE L13(38S8TeM)
INCLLWODE LIZ2(S3S7°1)
[*ZLJUDE LIS(INDE Y
:CLJDE LIfd(yveErTEY)
TCLLULE LIS TTNMC.T)
NTAE SITTOE(R)

FIGURE 4-02: Sample JCL to Compile and Link Edit

a Module of the CALCOMP Preview Program

¢ —ap—
st T

4
(@]

1. LOGON to NASC computer,
2. Do a LBGET by typing in:

LBG CLTKPDP DS('R831.LIBRARY') FORT RON
3. The result is a data set called

Userid.CLTKPDP.FORT. Now, perform an ITP, by typing in:

ITP CLTKPDP.FORT your name VOL(U90344) TIME(20)

When the job submitted by the ITP is finished the user retrieves his
tape and tramsports it to the PDP room. He types in the following
commands on the PDP-11/70.

PDP-11

1. LOGIN to the system.
2. Mounts tape by typing in:

ALLOC MMO:

MOUNT/FOREIGN MMO: 90017
3. Performs a TPL by typing in:

MCR TPI CLTOTK.FIN
This results in creating a data set in your UIC called CLTOTK.FIN.

.

4.2 Extensions to a Different Machine. If the CALCOMP Preview System

is to be implemented on a different machine, such as Honeywell, CDC, or
Burroughs, several changes to the source code may be required to allow
for differences in machine operation. These changes will probably involve

the areas described below:

a. Size of the CALCOMP records - On the IBM-and the PDP-11, CALCOMP
records are 360 characters. On another machine, the record
size may well be different from either the IBM or the PDP-ll.
Affected routine: FETCH.

b. Different intermal representation - Conversion to another
machine will require changes to any source code that converts
internal machine representation of a character to a number.
Affected routines: STNDRD, FETCH, TRNSLT.

95

Aoato

e e —

Baud rate -~ The baud rate of the Tektronix terminal connected
to a different computer may be different than either the PDP-11
or the IBM. (Thus, parameters in the calls to INITT and TERM
may need to be changed.) Affected routine: BLANKR.

Integer Representatiom - On the IBM, the default integer is a
full word integer. On the PDP-11l, the default integer is a
half word integer. On both machines, the INT function converts
a real number to a default integer. Because of overflow, real
numbers must be converted to full word integers. Hence, the
PDP-11 and IBM required different functions for real to full
word integer counversion. When converting to another machine,
be sure real to integer conversion results in a full word
integer. Affected routines: CALTEK, STNDRD, SPECL.

String Manipulations - The routines to manipulate strings

are machine dependent. On the IBM, they are written in assembly
language. On the PDP-1l, they are written in PDP-11 Fortranm 4
Plus. These routines will need to be rewritten for a different
machine. Affected routines: GSTRE, GSTRI, CONCAT, INDEX, SBSTRI,
SBSTRO, TRNSLT, VERIFY. .

File Name Specification - On the PDP-1l, the input file name
followed a strict convention; hence the need for subroutine GETFIL
called by subroutine FETCH. If conversion to another machine
requires an input file of a certain naming conventioun, GETFIL
needs to be changed. Otherwise, GETFIL may not be needed.
Affected routines: FETCH, GETFIL.

Messages - Instructions on how to use certain commands such as
"DUMP" and "'PLOT" may need to be changed because the naming

conventions for files. Affected routine: HELP

96

ST T T TR r———

h. Exclamation Point - On some machines, such as the IBM, the
exclamation point which delimits strings is unprintable and
may not be interpreted correctly when transferring to another
machine. Thus, the exclamation point needs to be explicicly
specified. Affected routines: DECODE, FEICH.

The IBM version of the CALCOMP Preview System, as impleﬁented on the
NASC AS/5-3 at DCEC, can be run via TSO with no-overlaying. Due to the
size of the program, the PDP-1l versiom needed an overlay structure to
permit successful linkage edit. See Figure 4-03 for the listing of the
overlay structure on the PDP-11/70. A similar overlay structure may

need to be built when trying to run om another machine.

4.3 Additional Commands. If a new command is to be added to the CALCOMP

Preview System, changes will need to be made to modules HELP and MAIN

as well as writing any software pertinent to the new command. In HELP,
the prompt telling the user all available commands will need to be
changed. Alsoc, a message telling how to use the new command will need to
be added to HELP. Another statement number will be added to the computed

GO TO to branch to the new message.

In module MAIN, IF statements will be needed to implement the new command.

One IF statement is needed to implement the actual command while another
IF statement is needed for the call to HELP with the message number to be

one greater than the current highest message number.

A new key word is added to the DATA statements to correspond to the

new command. Currently, variables compared to the key words allow for
one, three, four, five, six, seven, eight, and ten character responses.
These variables are named REPLY2, REPLY4, REPLY6, REPLY?7, REPLY8, REPLY9,
and REPL1l, respectively, to allow for the actual length of the respouse

foliowed by one space. Thus a three character response such as '"BOX"

97

q
RN

e oo

- N
- Jor e e ek

LPOOT CLROOT-X(ELANKR, BOX, HELP,WINDOW=ASK , DRAUS
Nt vl - i~ ~ 2 2 E Batly “HaN, 'R 50 .
(HRoTs ECTR gg%gzngg$kg‘sgggg?G%gFIL—LLSQ—TRRNE-BP;géjgLOC(-Q*DP*‘
2TRRTN: . -GSTRE-UERIFY~CONCAT-SBSTRI-SBSTRO- INDEX-TRNSLT |
DRAUSG: .FCTR AU DECODE-CALTEK-SYIHGT-% CORSUE)~ oo e
DRSUB: .E;ER WRAPUP,CIRCLE,STNDRD,SPECL,SPLINE ;

? FIGURE 4-03: Listing of Overlay Structure om PDP-11/70
’ ((60,20]CLTOTK. ODL)

is compared to REPLY4, which equals "BOX". Currently, the REPLY variables
provide only for responses currently in the program. Hence, no REPLY3,
REPLYS, or REPL1O. If the new command is nine characters in length,

a variable named REPL10 should be declared for use with the compares

used to interpret user responses. Likewise, if a new command is two
characters in length, a variable named REPLY3 should be added.

{ APPENDIX A
Mathematical Background
(Note: This appendix is intended for a reader who has a knowledge of

mathematics through elementary linear algebra).

The purpose of this appendix is to present the mathematical background
for the computations which the CALCOMP Preview System performs in
simulating the CALCOMP plotter. Anyone who modifies the methods used
to compute plotting coordinates must have a good understanding of this

Appendix.
I. Coordinate Systems used:

a. CALCOMP plotter: the plotter draws on a rectangular bed
which is 48 inches high by 82 inches wide. The origin of
coordinates is at the lower left hand corner, and the unit of
measurement is 1/5080 of an inch. Normally, therefore, the

largest Y value is 48 X 5080 = 243840, and the largest X

value is 82 X 5080 = 416560. The command system of the plotter
provides for a mechanical or mathematical relocation of the

origin to any arbitrary positiom, however.

b. TEKTRONIX graphic terminal, model 4014-1: The origin of
coordinates is at the lower left hand corner of the plot area.

The plottable points are at integer coordinates. The largest

Y value is 3120, and the largest X value is 4095.

II. Coordinate Transformation Technique used.
If the coordinates of the CALCOMP system are considered to be the
C-plane and those of the Tektronix are considered to be the T-plane,
the basic problem facing the program is to define, and then apply,
a rigid transformation from the C-plane into the T-plane that will
possess desired characteristics, normally expressed in terms of

scaling, offset, and rotation, or something equivalent.

The rigid transformation may be expressed as a matrix A with the

following properties:

/ .
If?= (xc,yc) 1is a vector of coordinates in the C-plane,
—>
and T = (xt,ytf, is the corresponding vector of coordinates

in the T-plane, then the transformation is rigid if

p. (=

A ye = (\Xt and the submatrix
1 yt

Al= fa aph
\%21 °22

is a multiple of an arthogonal matrix (and hence nonsingular).

Clearly A must be a 2 X 3 matrix; the vector
—>
f 13 is the point to which the origin of

o= : a
|
\a23

coordinates in the C-plane is mapped.
Alternatively, one could write the transformation as

—y
T = AC +-;’ and then solve for

-
C, given T)by
-1 =
C=4A (T - 0)
The program governs the transformation by establishing three
pairs of noncollinear points which correspond to each other

in the C-plane and the T-plane, and using the relationship to

determine the matrix A, as follows.
EC, ad T, (4 = 1,2.3)

are corresponding points, then A must satisfy

—

1 (T’
/)

1 A = Tz
>

1 T,

a-02

[
]
,
‘
.
P

III.

Within the program, the subroutine LLSQ is used to solve this
matrix equation. The matrix A is stored in the array CLTTX
(3,2) in labeled COMMON.

The three non-collinear points are the lower left, upper left,
and upper right cormers of the area to be plottad. Their
coordinates are stored in the arravs CLCRNR (3,2) ('CALCOMP-
Corners') and TRKCRNR (3,2) ('TEKTRONX-Corners') respectively,

in labeled COMMON. Assignment of these values is done

by various subroutines in the program, depending on the function

that the user selects.

Spline interpolationm.

The CALCOMP system performs spline interpolation by using four
soints, say X1, X2, X3, and X4. Given the four points, the system
draws a smooth curve from X2 to X3, using X1 and X4 to govern the
directions at the beginning and end of the curve. After this,

the 0ld X1 is discarded, X2 becomes X1, X3 becomes X2, X4 becomes

X3. 1If a new X4 is supplied, the process is repeated.

To start and end the plot of a curve, it 1s necessary to supply
"shantom points' which are never plotted, but which serve as
the first X1 and the last X4. I1f the first X1 is not distinct
from the first X2, or the last X4 is the same as the last X3,

the system still works, however.

This program uses a pair of cubic equatioms in an auxiliarv
variable, or parameter, to approximate this function. The
cooefficients are determined in a manner similar to that used for

coordinate transformation.

A-03

e

O

ek it o

The auxiliary variable t is chosen so that the points map thus:

T X | f
-3 X1 g
-1 X2

1 X3 i

3 X4

Then the coordinates are computed by [
2
x = a3c3 + a2t” + alt + ao

v = b3t3 + bZt2 + blc + bo

with t ranging from -1 to 1 with an increment just large enough to

make a change of one unit on the CRT face. The coefficient vectors

A= (a3 b2 al ao)
’
B - (b3 b2 bl bo) are determined by

.27 9 -3 I 11l
-1 1 -1 1 ‘5 - 2 12
1 1 1 1 <:* 53} = B3 13

27 9 3 1 X% Y4

Again, the subroutine LLSQ is used to solve this system and determine

the coefficients. ﬂ

If either end point is not distinct, the degree of the parameter

polynomial is reduced to two, and appropriate changes are made in the

matrices.

— | i "“"W - - e

} APPENDIX B

This appendix contains a cross reference table between the variables
contained in the common block COMBLK and the programs comprising the
#; CALCOMP Preview System. Any entry in the table containing a "U" f

means that the variable is used within a program but not changed. Any

entry containing a "C" means the variable is changed. v

114130
MOAONTM U VU LU b D &) o
SNV .
JOHWAS
QAANILS
ANT'IdS
103dS D oo =]
OSHWAO o 8]

NIVH O O U VL U U VU ULV LUUVUO

OsT1
d13an
HOLAA
dNdvViM O Vv L P D

Mvia O
Lvdadaa U LU O D DD (SIS TN S (SIS
40003 VU VL VU U OV U O
AT IO o)

. CAMLM]
X04 (8] [=

U v C C
U v Cc C
U u Cc C
u v Cc ¢C

CUu

AANVIE O D U D IS D P oS W Lo
ASY

S e e o, e ave, AL P

CLCRNR
CHCRNR
TRCRNR
SCCRNR
BDCRNR
CHURTC
COTPHI
SINPHI
CSCPHI
COSPHI
SECPHI
PSI
COSPSI
SINPSI
PSIX
SINPSX
COSPSX
AVALUE
BVALUE
EVALUE
FVALUE
IVALUE
JVALUE
NVALUE
PVALUE
QVALUE
RVALUE
SVALUE

CLTIX
PHI
TANPHI

o Bakai g o

114539 o

MOANIM
SNVl

JOHWAS .

AQAANIS & &) o o

INT'IS
103dS o e (SINS)

U U U vu

U U0 U u

OSHJO0 3]) =)
NIVH e} (SIS
0sT1
dTaH
HOLA4 0 o =N S (SIS
dNAVIM 0O P U b
Mviaa
Lvaaa

B-03

(& O O U U LU U Db D D D P b

400034 o =
ATOU1D
A1V

C
c
U
U

o= S

g U c Cc C
c
c
c
U
c
U
c
C

U U Vo P B0 OLVOOUVOOLO Y
Xog UL DD
WINVTY U LU VU LU U O (SIS (SENSENIENS

ASV

INFILE
LENSNT
NC

N

LETTER
GVALUE
LVALUE
MVALUE
TVALUE
HEIGHT
SPCIL
SPLLEN
XMAX
XMIN
TMAX
™MIN
XOFST
YOFST
XORG
YORG
XCAL
TCAL
XTEK
YTEK
XBFORE
YBFORE
OLDX
OLDY
PREVX
PREVY

SNTNCE
SPLTXT

CALTEK
CIRCLE
DECODE
DEFALT
DRAW
WRAPUP
FETCH *
HELP
1LLSQ
MAIN
OPMSG
SPECL
SPLINE
STNDRD
SYMHGT
TRANS
WINDOW
GETFIL

ASK
BLANKR
BOX

CURVE U o '
DFLTON
EXACT U o U

FILOPN o u o
FRAME u o

HALT
PNDOWN U o
PLOTNG o

RRIGIN
STEP c c ¢
ENDFIL c
RRGIND cC_U C

[o]
(@]
(@)

a o 0o g
(@]
a

O o o O

* In subroutine FETCH, the bit FILOPN is used only in the NASC version.
On the PDP-11/70, FETCH calls GETFIL instead.

R oy

Note: LLSQ does not access COMMON, but passes all values as arguments.

APPENDIX C .

Differences Between CALCOMP Routines on IBM and on PDP-1l

|
1. String manipulation routines in IBM are written in assembly language. ﬂ

7,

String manipulation routines on the PDP-ll are written in PDP Fortran & /]

PLUS. |
Affected routines: i
GSTRL SBSTRI [
GSTRE SBSTRO
INDEX CONCAT
VERIFY TRNSLT
2. In the subroutine BLANKR, the subroutines INITT and TERM require H
different parameters due to differences in baud rate and terminal
characteristics.
a) IBM calls to INITT and TERM are: ‘
CALL INITT (180) 4
CALL TERM (2,4096) t

b) PDP-11 calls to INITT and TERM are:
CALL INITT (1100)
CALL TERM (3,4096)

3. In the subroutine CALTEK, different built-in functions are used
to convert a real number into an integer. The IBM version uses

the INT function. The PDP-l1ll version uses the JINT function.

4, In the subroutine DECODE, the ASCII character (!) is not

available on the EBEDIE character set used in the NASC system. The
corresponding character used is the right bracket (]). The

exclamation point (!) is used on the PDP-1l.

In the subroutine FETCH, the variable SPCIL, which contains a pointer
to a designated special character is computed differently due to
differences in intermal representation on the IBM and PDP-11. On

the IBM, SPCIL is the quotient of ISPCL (the machine representation
of the special character) and the constant 16777216. On the PDP-11,
SPCIL is equal to the difference between ISPCL and the constant
538976256.

Due to the naming convention of PDP-1l Fortran files, the PDP-11
version of FETCH calls a subroutine GETFIL with a parameter 0 or 1,

while the IBM version merely sets a bit FILOPN true or false.

The exclamation point character is not available on the NASC

system, and is handled as described in para 4, above.

In the subroutine SPECL, different built-in functions are used to
convert a real number into an integer. The IBM version uses the INT

function. The PDP-11 version uses the JINT function.

In the subroutine STNDRD: .

a) Due to different internal representations in the IBM and
PDP-11, the variable PTR, which is used as a pointer, is
calculated differently. In the IBM, PTR is the gquotient of
RIUP(1l) divided by 256. In the PDP-11l, PTR is the
difference between K1UP(l) and 8192.

b) Different built-in functions are used to convert a real
number into an integer. The IBM version uses the INT functionm.

The PDP-1l version uses the JINT function.

In the subroutine HELP, the messages for the PLOT and DUMP commands

are different in accordance with differences between the PDP-~1ll and IBM.

On the NASC, DRAW and WRAPUP are compiled simultaneously. On the
PDP-11, they are stored in separate object modules.

c~-02

ST A

e ——

b

APPENDIX D

Structure of the CALCOMP Plot File i

The structure of the CALCOMP plot file, the primary input to the CPS, is
governed by the design of the CALCOMP plotter, as implemented by the
software distributed by the CALCOMP manufacturer. This structure, in
turn, governed the design of subroutine FETCH, which performs the input

function for the program.

The logical structure of the files is the same in any implementation of
the CALCOMP plotter; however, the physical structure of the files differs
greatly among the various computers that support it, such as the PDP-11,
NASC AS-5/3, or IBM 370 systems. This appendix describes only the logical
structure of the records in the files. Any implementation of this

k program must rely on the operating system for the physical input function.

The file is composed of a sequence of sentences, which provide commands
and data. The sentence, in turn, is composed of a sequence of words,
which carry the individual data items. Each word begins with ; letter,
which may be followed either by numeric data or by a character string.
A character string is a non-null string of characters preceded and

followed by an exclamation point. The exclamation point character amay

be transmitted only as a single character, in a group of three exclamatrion
points. In that case, the first and third exclamation points are used
as delimjiters, and the second one is the data. Any characters contained

in a character string are treated as data, and lose any significance

r
{ they might have had otherwise. The sentence is ended by a period not

contained in a character string.

The records in the file start with a four-byte constant string called
a sync code, which serves to mark the beginning of the words in the
record. The words in the record are contained between the svnc code

and a dollar sign which is outside a character string. The delimiting

dollar sign, and any data that follows it, is not otherwise significant.

Sentences may be continued over more than one logical record, but they are
always broken between words, so that logical records contain complete

words, but not necessarily complete sentences.

._,1_._-..__.

The data is transmitted in modified ASCII8, in which the space character is
binary zero, and all other characters follow in the ASCII character -
collating sequence, up to the underscore character, which has binary ;
value 63. ﬁ

The following are examples of CALCOMP sentences, and their interpretatiom.

A complete description is given in reference 1.2b.

a. N17G1D2X-66040Y86360.

The parts are:

N17 - identifies and numbers the sentence.

Gl - move or draw to the following coordinates.

D2 -~ raise the pen - i.e. move, do not draw.

X-66040 - X coordinate is minus 66040 "CALCOMP Units', which
normally are scaled 5080 to one inch.

Y86360 - Y coordinate is plus 86360 CALCOMP units.

. - marks the end of the sentence.]

b. N3T1G25XYM1. ,
The parts are: q
N3 - identifies and numbers the sentence.
Tl - search address for operator use.
G25 ~ reorigin the coordinate system to the present location
of the pen.
X - new X coordinate 1is 0.

Y - new Y coordinate is 0.

Ml - perform a temporary halt.

. - marks the end of the sentence.

D=-02

c. N145GS52!HAPPY FACE!.
The parts are:

N145 - identifies and numbers the sentence.

e ———— .

G52 - command to print a string of characters.
'HAPPY FACE! - The string of characters to be printed.
The exclamation points are delimiters.

. - marks the end of the sentence.

Figure D-0l1 contains a listing, in EBCDIC characters, of a plot file {
used as test and demonstration data, which was produced by the TDUMP
subroutine provided by CALCOMP and described in Reference 1.2b. The
listing, as produced by TDUMP, differs slightly from the true content of
the file, as follows:

The sync code, which is the firsct four characters of each logical

record, is represented as '?77??'. The.ASCII value is '?7997?7°',

The delimiters on quoted strings are shown as single quote marks.
They are, in fact, exclamation points, ASCII8 character 33 (Hex 21).
This character is represented as fj’ on one of the EBCDIC print sets
used on the HSF NASC AS/S5-3 computers, and is unprintable on the

other. {

Note that when the data in a record is terminated by a data delimiter
($), the characters following the delimiter are left unchanged, and

are not significant to the program.

The length of the logical record is determined by parameters set within
the CALCOMP subroutines used at the installatiom. At the HSF, the
subroutine that governs the length is called BUFF; the governing
parameter is JMAX, which sets the record at 30 words, or 360 characters.
Of this, four are used for the sync code, and 356 remain for data.]

D=-03

o2 wmoond

2114 1014 dWOD'TY) ardues 1 70-a AANDTA

pPINOAX 01 PIOIDIT WOAJ PAMNUTIUOD DU JUAG

furais-aajoraeyd pajond

() saPIIMI 2P BIRP pur SOHPOd IRy

4480y AR INAAN 1, AR

$$30802CVFLIN"09101A000L 2IXYON0ITO A0 LT LINSYM O O AOCOTOIXOINIYVIZAPE IO IKIINCOOLSZAOLAOTI X T4y (HeN UL TEMTAX 0102
HeIGSOIONS 0B Y0EADILZS IXOON 0UYCEADND S INSLN 00O JOO VIS INGLN®000G2A0Z L ICLLN®I2edTA0% 27t U210y h AW 12T Ixu A 1"Cuncane?
COIXVIN GO I0TA0OYEGIXELL "0ZE0ZA00VZSIX2 2L 00YGAOEEZ G INTLNL®OALITANKZZEIXOLN®NEEOCAONOTC IXAINCO LG ROT P20 L b 1600 2222
$SSCUOFEINLIINCO09IOTAN00LSENIUNTOITOTAOD LT IIXSONPIECZACOVTIOIXYIN®IGYITACYI IO INE 100 LSZALYHOTIXNTSY S AN, 1AL E, xzoteza
HETUSDAUN 0B Y0EAQISCI IXOIN0GVYOEADISZIINSLN06Y OOVCTSIXBLN®00VGEAOZR I IC2LN"0CEIASOTIVINILNICCOIITINO0OSTILE INGLLNECCADYS
CHIXVINCOVI0TACOCEGINFLZN®O2F0ZA00VTSINZ L0006 eV IXTLN OB V0L AOVESUY IX0IN®ORVOLADGOTE IXANITOOHL PANN0 LY IXALMN O E02AIIET

$3$0B802EIXLIN®OVIOTAVOOLZIXYYI® 0910 VA09 2 111X A
1AO09990 IXQOINOPSSLR02CIONSSN0BVYOEACYY I AXASH CEANGY
XZSN*O0SEGBAOYSECEXTUN0B2TBAOOVSZIXOGH®0T 112 o

_xc.wé JIVICADI2IIINCINIIVSTADSIITINTII®OCZ S AC e T INTIOrOIn
1 13SC9 Gri® —CMUmm"OQOQQ»ur.u CXVIMNTOOTILADSIGONESE *) IEIRACILSY
Qcmn-chv_ooonm AQAVO T X2 YN 3.-.0M>3. LLOXORTCHICTIANITLNYS N2

“-mc
NIx 0
YIS -
)L"Q

$SS°09101A0ZIILXVOI®TUGOEVNSTUGSOSUNTOVO9TAOGHNGSXTONCCOZHAORISSNOYN®) IXSLTN®0IFIIACOTOLXYEN®IBZIBAOI(IAXLITIEoCZTY
LAOCSISAIEN"0BBYSACIHLIOXSEN®0ISHEAORTIG XPEN"TCCOCAO YOOOXEENI®0VYZSIA00E O—O—>0e3°e‘~n:-—:m. OEN®eMIL 2 TSVEZHJYHYOEANS
612 IXCUIDYEZN®eIOVSESTr. 4N AVUIAD UNODHS o SSDLZH 1 SANN 4 LLOFTH P OUEGHANH FAN TN W IGNALTVGIUER® 136 2N°0 T 17 A0 ST I XLEL?

$CUBTZH0ZS96A0091CIXTOTZNT0VYI6A0YY IOXZUOTNCOE OB AOUGHOX6INSCZ GO54009 10T TAUE 192021 3A025HEKTQITIHOYICY AN ZLSY, areatNy
®sJUYSSIh UULYBIAGY F VWY SeSHIGIN®00vSTAOIVOEX G TN NG L TACRYOrXEIN G ROLAOTEITX ZIN®ILILEROSCOT TTH O LZSTAGOTIC IxT 20 L. TAQ2
E0ZX6N°00VS2ZA0u0OEXTIUYN®OV2GIAOTEOZXZA DL AOBOGX A CAODGZY IXGHOCI TOIAOISZ2IIN v ODIIOTADED SN TV S ISACPO Y. OIS 1 182207
\J X &y OPDE v [L e N b L})3 - 1L) - 11 "°”)e .
s O g 3J O° °)s J g 1% el 1 s L ¢ Do))s) * . > hd v)s (3 |
] ' O s s - t 114 3 s " s - [}) - n s -* L + 1 »- ¢|>r,..—- b LW IR RN Y)

*{66L ST ANTRA TENIOY IHAOD ONAS

[SRATLFR B 0 NS RO 2 BT NG T S TR A TP] |
[X1) AT IISSVION (YN XY

e ad ki

